-
Notifications
You must be signed in to change notification settings - Fork 24
/
plenoptimize.py
479 lines (429 loc) · 19.1 KB
/
plenoptimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import os
import json
from argparse import ArgumentParser
from re import split
import numpy as np
from tqdm import tqdm
import imageio
from PIL import Image
import jax
np.random.seed(0)
def get_freer_gpu():
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
memory_available = [int(x.split()[2]) for x in open('tmp', 'r').readlines()]
return np.argmax(memory_available)
gpu = get_freer_gpu()
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu)
print(f'gpu is {gpu}')
# Import jax only after setting the visible gpu
import jax
import jax.numpy as jnp
import plenoxel
from jax.ops import index, index_update, index_add
from jax.lib import xla_bridge
print(xla_bridge.get_backend().platform)
if __name__ != "__main__":
os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '.001'
flags = ArgumentParser()
flags.add_argument(
"--data_dir", '-d',
type=str,
default='./nerf/data/nerf_synthetic/',
help="Dataset directory e.g. nerf_synthetic/"
)
flags.add_argument(
"--expname",
type=str,
default="experiment",
help="Experiment name."
)
flags.add_argument(
"--scene",
type=str,
default='lego',
help="Name of the synthetic scene."
)
flags.add_argument(
"--log_dir",
type=str,
default='jax_logs/',
help="Directory to save outputs."
)
flags.add_argument(
"--resolution",
type=int,
default=256,
help="Grid size."
)
flags.add_argument(
"--ini_rgb",
type=float,
default=0.0,
help="Initial harmonics value in grid."
)
flags.add_argument(
"--ini_sigma",
type=float,
default=0.1,
help="Initial sigma value in grid."
)
flags.add_argument(
"--radius",
type=float,
default=1.3,
help="Grid radius. 1.3 works well on most scenes, but ship requires 1.5"
)
flags.add_argument(
"--harmonic_degree",
type=int,
default=2,
help="Degree of spherical harmonics. Supports 0, 1, 2, 3, 4."
)
flags.add_argument(
'--num_epochs',
type=int,
default=1,
help='Epochs to train for.'
)
flags.add_argument(
'--render_interval',
type=int,
default=40,
help='Render images during test/val step every x images.'
)
flags.add_argument(
'--val_interval',
type=int,
default=2,
help='Run test/val step every x epochs.'
)
flags.add_argument(
'--lr_rgb',
type=float,
default=None,
help='SGD step size for rgb. Default chooses automatically based on resolution.'
)
flags.add_argument(
'--lr_sigma',
type=float,
default=None,
help='SGD step size for sigma. Default chooses automatically based on resolution.'
)
flags.add_argument(
'--physical_batch_size',
type=int,
default=4000,
help='Number of rays per batch, to avoid OOM.'
)
flags.add_argument(
'--logical_batch_size',
type=int,
default=4000,
help='Number of rays per optimization batch. Must be a multiple of physical_batch_size.'
)
flags.add_argument(
'--jitter',
type=float,
default=0.0,
help='Take samples that are jittered within each voxel, where values are computed with trilinear interpolation. Parameter controls the std dev of the jitter, as a fraction of voxel_len.'
)
flags.add_argument(
'--uniform',
type=float,
default=0.5,
help='Initialize sample locations to be uniformly spaced at this interval (as a fraction of voxel_len), rather than at voxel intersections (default if uniform=0).'
)
flags.add_argument(
'--occupancy_penalty',
type=float,
default=0.0,
help='Penalty in the loss term for occupancy; encourages a sparse grid.'
)
flags.add_argument(
'--reload_epoch',
type=int,
default=None,
help='Epoch at which to resume training from a saved model.'
)
flags.add_argument(
'--save_interval',
type=int,
default=1,
help='Save the grid checkpoints after every x epochs.'
)
flags.add_argument(
'--prune_epochs',
type=int,
nargs='+',
default=[],
help='List of epoch numbers when pruning should be done.'
)
flags.add_argument(
'--prune_method',
type=str,
default='weight',
help='Weight or sigma: prune based on contribution to training rays, or opacity.'
)
flags.add_argument(
'--prune_threshold',
type=float,
default=0.001,
help='Threshold for pruning voxels (either by weight or by sigma).'
)
flags.add_argument(
'--split_epochs',
type=int,
nargs='+',
default=[],
help='List of epoch numbers when splitting should be done.'
)
flags.add_argument(
'--interpolation',
type=str,
default='trilinear',
help='Type of interpolation to use. Options are constant, trilinear, or tricubic.'
)
flags.add_argument(
'--nv',
action='store_true',
help='Use the Neural Volumes rendering formula instead of the Max (NeRF) rendering formula.'
)
FLAGS = flags.parse_args()
data_dir = FLAGS.data_dir + FLAGS.scene
radius = FLAGS.radius
def get_data(root, stage):
all_c2w = []
all_gt = []
data_path = os.path.join(root, stage)
data_json = os.path.join(root, 'transforms_' + stage + '.json')
print('LOAD DATA', data_path)
j = json.load(open(data_json, 'r'))
for frame in tqdm(j['frames']):
fpath = os.path.join(data_path, os.path.basename(frame['file_path']) + '.png')
c2w = frame['transform_matrix']
im_gt = imageio.imread(fpath).astype(np.float32) / 255.0
im_gt = im_gt[..., :3] * im_gt[..., 3:] + (1.0 - im_gt[..., 3:])
all_c2w.append(c2w)
all_gt.append(im_gt)
focal = 0.5 * all_gt[0].shape[1] / np.tan(0.5 * j['camera_angle_x'])
all_gt = np.asarray(all_gt)
all_c2w = np.asarray(all_c2w)
return focal, all_c2w, all_gt
if __name__ == "__main__":
focal, train_c2w, train_gt = get_data(data_dir, "train")
test_focal, test_c2w, test_gt = get_data(data_dir, "test")
assert focal == test_focal
H, W = train_gt[0].shape[:2]
n_train_imgs = len(train_c2w)
n_test_imgs = len(test_c2w)
log_dir = FLAGS.log_dir + FLAGS.expname
os.makedirs(log_dir, exist_ok=True)
automatic_lr = False
if FLAGS.lr_rgb is None or FLAGS.lr_sigma is None:
automatic_lr = True
FLAGS.lr_rgb = 150 * (FLAGS.resolution ** 1.75)
FLAGS.lr_sigma = 51.5 * (FLAGS.resolution ** 2.37)
if FLAGS.reload_epoch is not None:
reload_dir = os.path.join(log_dir, f'epoch_{FLAGS.reload_epoch}')
print(f'Reloading the grid from {reload_dir}')
data_dict = plenoxel.load_grid(dirname=reload_dir, sh_dim = (FLAGS.harmonic_degree + 1)**2)
else:
print(f'Initializing the grid')
data_dict = plenoxel.initialize_grid(resolution=FLAGS.resolution, ini_rgb=FLAGS.ini_rgb, ini_sigma=FLAGS.ini_sigma, harmonic_degree=FLAGS.harmonic_degree)
# low-pass filter the ground truth image so the effective resolution matches twice that of the grid
def lowpass(gt, resolution):
if gt.ndim > 3:
print(f'lowpass called on image with more than 3 dimensions; did you mean to use multi_lowpass?')
H = gt.shape[0]
W = gt.shape[1]
im = Image.fromarray((np.squeeze(np.asarray(gt))*255).astype(np.uint8))
im = im.resize(size=(resolution*2, resolution*2))
im = im.resize(size=(H, W))
return np.asarray(im) / 255.0
# low-pass filter a stack of images where the first dimension indexes over the images
def multi_lowpass(gt, resolution):
if gt.ndim <= 3:
print(f'multi_lowpass called on image with 3 or fewer dimensions; did you mean to use lowpass instead?')
H = gt.shape[-3]
W = gt.shape[-2]
clean_gt = np.copy(gt)
for i in range(len(gt)):
im = Image.fromarray(np.squeeze(gt[i,...] * 255).astype(np.uint8))
im = im.resize(size=(resolution*2, resolution*2))
im = im.resize(size=(H, W))
im = np.asarray(im) / 255.0
clean_gt[i,...] = im
return clean_gt
def get_loss(data_dict, c2w, gt, H, W, focal, resolution, radius, harmonic_degree, jitter, uniform, key, sh_dim, occupancy_penalty, interpolation, nv):
rays = plenoxel.get_rays(H, W, focal, c2w)
rgb, disp, acc, weights, voxel_ids = plenoxel.render_rays(data_dict, rays, resolution, key, radius, harmonic_degree, jitter, uniform, interpolation, nv)
mse = jnp.mean((rgb - lowpass(gt, resolution))**2)
indices, data = data_dict
loss = mse + occupancy_penalty * jnp.mean(jax.nn.relu(data[-1]))
return loss
def get_loss_rays(data_dict, rays, gt, resolution, radius, harmonic_degree, jitter, uniform, key, sh_dim, occupancy_penalty, interpolation, nv):
rgb, disp, acc, weights, voxel_ids = plenoxel.render_rays(data_dict, rays, resolution, key, radius, harmonic_degree, jitter, uniform, interpolation, nv)
mse = jnp.mean((rgb - gt)**2)
indices, data = data_dict
loss = mse + occupancy_penalty * jnp.mean(jax.nn.relu(data[-1]))
return loss
def get_rays_np(H, W, focal, c2w):
i, j = np.meshgrid(np.arange(W, dtype=np.float32) + 0.5, np.arange(H, dtype=np.float32) + 0.5, indexing='xy')
dirs = np.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
return rays_o, rays_d
def render_pose_rays(data_dict, c2w, H, W, focal, resolution, radius, harmonic_degree, jitter, uniform, key, sh_dim, batch_size, interpolation, nv):
rays_o, rays_d = get_rays_np(H, W, focal, c2w)
rays_o = np.reshape(rays_o, [-1,3])
rays_d = np.reshape(rays_d, [-1,3])
rgbs = []
disps = []
for i in range(int(np.ceil(H*W/batch_size))):
start = i*batch_size
stop = min(H*W, (i+1)*batch_size)
if jitter > 0:
rgbi, dispi, acci, weightsi, voxel_idsi = jax.lax.stop_gradient(plenoxel.render_rays(data_dict, (rays_o[start:stop], rays_d[start:stop]), resolution, key[start:stop], radius, harmonic_degree, jitter, uniform, interpolation, nv))
else:
rgbi, dispi, acci, weightsi, voxel_idsi = jax.lax.stop_gradient(plenoxel.render_rays(data_dict, (rays_o[start:stop], rays_d[start:stop]), resolution, None, radius, harmonic_degree, jitter, uniform, interpolation, nv))
rgbs.append(rgbi)
disps.append(dispi)
rgb = jnp.reshape(jnp.concatenate(rgbs, axis=0), (H, W, 3))
disp = jnp.reshape(jnp.concatenate(disps, axis=0), (H, W))
return rgb, disp, None, None
def run_test_step(i, data_dict, test_c2w, test_gt, H, W, focal, FLAGS, key, name_appendage=''):
print('Evaluating')
sh_dim = (FLAGS.harmonic_degree + 1)**2
tpsnr = 0.0
for j, (c2w, gt) in tqdm(enumerate(zip(test_c2w, test_gt))):
rgb, disp, _, _ = render_pose_rays(data_dict, c2w, H, W, focal, FLAGS.resolution, radius, FLAGS.harmonic_degree, FLAGS.jitter, FLAGS.uniform, key, sh_dim, FLAGS.physical_batch_size, FLAGS.interpolation, FLAGS.nv)
mse = jnp.mean((rgb - gt)**2)
psnr = -10.0 * np.log(mse) / np.log(10.0)
tpsnr += psnr
if FLAGS.render_interval > 0 and j % FLAGS.render_interval == 0:
disp3 = jnp.concatenate((disp[...,jnp.newaxis], disp[...,jnp.newaxis], disp[...,jnp.newaxis]), axis=2)
vis = jnp.concatenate((gt, rgb, disp3), axis=1)
vis = np.asarray((vis * 255)).astype(np.uint8)
imageio.imwrite(f"{log_dir}/{j:04}_{i:04}{name_appendage}.png", vis)
del rgb, disp
tpsnr /= n_test_imgs
return tpsnr
def update_grid(old_grid, lr, grid_grad):
return index_add(old_grid, index[...], -1 * lr * grid_grad)
def update_grids(old_grid, lrs, grid_grad):
for i in range(len(old_grid)):
old_grid[i] = index_add(old_grid[i], index[...], -1 * lrs[i] * grid_grad[i])
return old_grid
if FLAGS.physical_batch_size is not None:
print(f'precomputing all the training rays')
# Precompute all the training rays and shuffle them
rays = np.stack([get_rays_np(H, W, focal, p) for p in train_c2w[:,:3,:4]], 0) # [N, ro+rd, H, W, 3]
rays_rgb = np.concatenate([rays, multi_lowpass(train_gt[:,None], FLAGS.resolution).astype(np.float32)], 1) # [N, ro+rd+rgb, H, W, 3]
rays_rgb = np.transpose(rays_rgb, [0,2,3,1,4]) # [N, H, W, ro+rd+rgb, 3]
rays_rgb = np.reshape(rays_rgb, [-1,3,3]) # [(N-1)*H*W, ro+rd+rgb, 3]
rays_rgb = rays_rgb.take(np.random.permutation(rays_rgb.shape[0]), axis=0)
print(f'generating random keys')
split_keys_partial = jax.vmap(jax.random.split, in_axes=0, out_axes=0)
split_keys = jax.vmap(split_keys_partial, in_axes=1, out_axes=1)
if FLAGS.physical_batch_size is None:
keys = jax.vmap(jax.vmap(jax.random.PRNGKey, in_axes=0, out_axes=0), in_axes=1, out_axes=1)(jnp.reshape(jnp.arange(800*800), (800,800)))
else:
keys = jax.vmap(jax.random.PRNGKey, in_axes=0, out_axes=0)(jnp.arange(FLAGS.physical_batch_size))
render_keys = jax.vmap(jax.random.PRNGKey, in_axes=0, out_axes=0)(jnp.arange(800*800))
if FLAGS.jitter == 0:
render_keys = None
keys = None
def main():
global rays_rgb, keys, render_keys, data_dict, FLAGS, radius, train_c2w, train_gt, test_c2w, test_gt, automatic_lr
start_epoch = 0
sh_dim = (FLAGS.harmonic_degree + 1)**2
if FLAGS.reload_epoch is not None:
start_epoch = FLAGS.reload_epoch + 1
if np.isin(FLAGS.reload_epoch, FLAGS.prune_epochs):
data_dict = plenoxel.prune_grid(data_dict, method=FLAGS.prune_method, threshold=FLAGS.prune_threshold, train_c2w=train_c2w, H=H, W=W, focal=focal, batch_size=FLAGS.physical_batch_size, resolution=FLAGS.resolution, key=render_keys, radius=FLAGS.radius, harmonic_degree=FLAGS.harmonic_degree, jitter=FLAGS.jitter, uniform=FLAGS.uniform, interpolation=FLAGS.interpolation)
if np.isin(FLAGS.reload_epoch, FLAGS.split_epochs):
data_dict = plenoxel.split_grid(data_dict)
FLAGS.resolution = FLAGS.resolution * 2
if automatic_lr:
FLAGS.lr_rgb = 150 * (FLAGS.resolution ** 1.75)
FLAGS.lr_sigma = 51.5 * (FLAGS.resolution ** 2.37)
for i in range(start_epoch, FLAGS.num_epochs):
# Shuffle data before each epoch
if FLAGS.physical_batch_size is None:
temp = list(zip(train_c2w, train_gt))
np.random.shuffle(temp)
train_c2w, train_gt = zip(*temp)
else:
assert FLAGS.logical_batch_size % FLAGS.physical_batch_size == 0
# Shuffle rays over all training images
rays_rgb = rays_rgb.take(np.random.permutation(rays_rgb.shape[0]), axis=0)
print('epoch', i)
indices, data = data_dict
if FLAGS.physical_batch_size is None:
occupancy_penalty = FLAGS.occupancy_penalty / len(train_c2w)
for j, (c2w, gt) in tqdm(enumerate(zip(train_c2w, train_gt)), total=len(train_c2w)):
if FLAGS.jitter > 0:
splitkeys = split_keys(keys)
keys = splitkeys[...,0,:]
subkeys = splitkeys[...,1,:]
else:
subkeys = None
mse, data_grad = jax.value_and_grad(lambda grid: get_loss((indices, grid), c2w, gt, H, W, focal, FLAGS.resolution, radius, FLAGS.harmonic_degree, FLAGS.jitter, FLAGS.uniform, subkeys, sh_dim, occupancy_penalty, FLAGS.interpolation, FLAGS.nv))(data)
else:
occupancy_penalty = FLAGS.occupancy_penalty / (len(rays_rgb) // FLAGS.logical_batch_size)
for k in tqdm(range(len(rays_rgb) // FLAGS.logical_batch_size)):
logical_grad = None
for j in range(FLAGS.logical_batch_size // FLAGS.physical_batch_size):
if FLAGS.jitter > 0:
splitkeys = split_keys_partial(keys)
keys = splitkeys[...,0,:]
subkeys = splitkeys[...,1,:]
else:
subkeys = None
effective_j = k*(FLAGS.logical_batch_size // FLAGS.physical_batch_size) + j
batch = rays_rgb[effective_j*FLAGS.physical_batch_size:(effective_j+1)*FLAGS.physical_batch_size] # [B, 2+1, 3*?]
batch_rays, target_s = (batch[:,0,:], batch[:,1,:]), batch[:,2,:]
mse, data_grad = jax.value_and_grad(lambda grid: get_loss_rays((indices, grid), batch_rays, target_s, FLAGS.resolution, radius, FLAGS.harmonic_degree, FLAGS.jitter, FLAGS.uniform, subkeys, sh_dim, occupancy_penalty, FLAGS.interpolation, FLAGS.nv))(data)
if FLAGS.logical_batch_size > FLAGS.physical_batch_size:
if logical_grad is None:
logical_grad = data_grad
else:
logical_grad = [a + b for a, b in zip(logical_grad, data_grad)]
del data_grad
del mse, batch, batch_rays, target_s, subkeys, effective_j
lrs = [FLAGS.lr_rgb / (FLAGS.logical_batch_size // FLAGS.physical_batch_size)]*sh_dim + [FLAGS.lr_sigma / (FLAGS.logical_batch_size // FLAGS.physical_batch_size)]
if FLAGS.logical_batch_size > FLAGS.physical_batch_size:
data = update_grids(data, lrs, logical_grad)
del logical_grad
else:
data = update_grids(data, lrs, data_grad)
del data_grad, logical_grad
data_dict = (indices, data)
del indices, data
if np.isin(i, FLAGS.prune_epochs):
data_dict = plenoxel.prune_grid(data_dict, method=FLAGS.prune_method, threshold=FLAGS.prune_threshold, train_c2w=train_c2w, H=H, W=W, focal=focal, batch_size=FLAGS.physical_batch_size, resolution=FLAGS.resolution, key=render_keys, radius=FLAGS.radius, harmonic_degree=FLAGS.harmonic_degree, jitter=FLAGS.jitter, uniform=FLAGS.uniform, interpolation=FLAGS.interpolation)
if np.isin(i, FLAGS.split_epochs):
data_dict = plenoxel.split_grid(data_dict)
FLAGS.lr_rgb = FLAGS.lr_rgb * 3
FLAGS.lr_sigma = FLAGS.lr_sigma * 3
FLAGS.resolution = FLAGS.resolution * 2
if automatic_lr:
FLAGS.lr_rgb = 150 * (FLAGS.resolution ** 1.75)
FLAGS.lr_sigma = 51.5 * (FLAGS.resolution ** 2.37)
if FLAGS.physical_batch_size is not None:
# Recompute all the training rays at the new resolution and shuffle them
rays = np.stack([get_rays_np(H, W, focal, p) for p in train_c2w[:,:3,:4]], 0) # [N, ro+rd, H, W, 3]
rays_rgb = np.concatenate([rays, multi_lowpass(train_gt[:,None], FLAGS.resolution).astype(np.float32)], 1) # [N, ro+rd+rgb, H, W, 3]
rays_rgb = np.transpose(rays_rgb, [0,2,3,1,4]) # [N, H, W, ro+rd+rgb, 3]
rays_rgb = np.reshape(rays_rgb, [-1,3,3]) # [(N-1)*H*W, ro+rd+rgb, 3]
rays_rgb = rays_rgb.take(np.random.permutation(rays_rgb.shape[0]), axis=0)
if i % FLAGS.save_interval == FLAGS.save_interval - 1 or i == FLAGS.num_epochs - 1:
print(f'Saving checkpoint at epoch {i}')
plenoxel.save_grid(data_dict, os.path.join(log_dir, f'epoch_{i}'))
if i % FLAGS.val_interval == FLAGS.val_interval - 1 or i == FLAGS.num_epochs - 1:
validation_psnr = run_test_step(i + 1, data_dict, test_c2w, test_gt, H, W, focal, FLAGS, render_keys)
print(f'at epoch {i}, test psnr is {validation_psnr}')
if __name__ == "__main__":
main()