-
Notifications
You must be signed in to change notification settings - Fork 50
/
main.go
148 lines (132 loc) · 3.17 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
package main
import (
"bufio"
"bytes"
"encoding/base64"
"encoding/csv"
"flag"
"fmt"
"image"
"image/png"
"io"
"math/rand"
"os"
"strconv"
"time"
)
func main() {
// 784 inputs - 28 x 28 pixels, each pixel is an input
// 100 hidden nodes - an arbitrary number
// 10 outputs - digits 0 to 9
// 0.1 is the learning rate
net := CreateNetwork(784, 200, 10, 0.1)
mnist := flag.String("mnist", "", "Either train or predict to evaluate neural network")
file := flag.String("file", "", "File name of 28 x 28 PNG file to evaluate")
flag.Parse()
// train or mass predict to determine the effectiveness of the trained network
switch *mnist {
case "train":
mnistTrain(&net)
save(net)
case "predict":
load(&net)
mnistPredict(&net)
default:
// don't do anything
}
// predict individual digit images
if *file != "" {
// print the image out nicely on the terminal
printImage(getImage(*file))
// load the neural network from file
load(&net)
// predict which number it is
fmt.Println("prediction:", predictFromImage(net, *file))
}
}
func mnistTrain(net *Network) {
rand.Seed(time.Now().UTC().UnixNano())
t1 := time.Now()
for epochs := 0; epochs < 5; epochs++ {
testFile, _ := os.Open("mnist_dataset/mnist_train.csv")
r := csv.NewReader(bufio.NewReader(testFile))
for {
record, err := r.Read()
if err == io.EOF {
break
}
inputs := make([]float64, net.inputs)
for i := range inputs {
x, _ := strconv.ParseFloat(record[i], 64)
inputs[i] = (x / 255.0 * 0.999) + 0.001
}
targets := make([]float64, 10)
for i := range targets {
targets[i] = 0.001
}
x, _ := strconv.Atoi(record[0])
targets[x] = 0.999
net.Train(inputs, targets)
}
testFile.Close()
}
elapsed := time.Since(t1)
fmt.Printf("\nTime taken to train: %s\n", elapsed)
}
func mnistPredict(net *Network) {
t1 := time.Now()
checkFile, _ := os.Open("mnist_dataset/mnist_test.csv")
defer checkFile.Close()
score := 0
r := csv.NewReader(bufio.NewReader(checkFile))
for {
record, err := r.Read()
if err == io.EOF {
break
}
inputs := make([]float64, net.inputs)
for i := range inputs {
if i == 0 {
inputs[i] = 1.0
}
x, _ := strconv.ParseFloat(record[i], 64)
inputs[i] = (x / 255.0 * 0.999) + 0.001
}
outputs := net.Predict(inputs)
best := 0
highest := 0.0
for i := 0; i < net.outputs; i++ {
if outputs.At(i, 0) > highest {
best = i
highest = outputs.At(i, 0)
}
}
target, _ := strconv.Atoi(record[0])
if best == target {
score++
}
}
elapsed := time.Since(t1)
fmt.Printf("Time taken to check: %s\n", elapsed)
fmt.Println("score:", score)
}
// print out image on iTerm2; equivalent to imgcat on iTerm2
func printImage(img image.Image) {
var buf bytes.Buffer
png.Encode(&buf, img)
imgBase64Str := base64.StdEncoding.EncodeToString(buf.Bytes())
fmt.Printf("\x1b]1337;File=inline=1:%s\a\n", imgBase64Str)
}
// get the file as an image
func getImage(filePath string) image.Image {
imgFile, err := os.Open(filePath)
defer imgFile.Close()
if err != nil {
fmt.Println("Cannot read file:", err)
}
img, _, err := image.Decode(imgFile)
if err != nil {
fmt.Println("Cannot decode file:", err)
}
return img
}