-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfit_eigenmodes.py
executable file
·171 lines (138 loc) · 5.89 KB
/
fit_eigenmodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
import matplotlib
matplotlib.use('Agg') # headless
import matplotlib.pyplot as plt
import os
import fields
import data_manipulation
import eigenmodes
import tokamak
import numpy as np
import math
import pickle
import scipy
import pylab
shot = 81077
coil = 'VF'
coil_time, coil_signal = tokamak.coil_current(shot, coil)
sensor_groups = []
#TA_suffixes = ['S1P', 'S2P', 'S3P', 'S4P']
#sensor_groups += [[s for s in tokamak.sensors('TA') if n in s.name] for n in TA_suffixes]
FB_suffixes = ['S1P', 'S2P', 'S3P', 'S4P', 'S1R', 'S2R', 'S3R', 'S4R', 'S4R']
FB_bad = ['S1P', 'S4P']
sensor_groups += [[s for s in tokamak.sensors('FB') if n in s.name] for n in FB_suffixes
if n not in FB_bad]
#PA_suffixes = ['S01R', 'S02R', 'S03R', 'S04R', 'S05R', 'S06R',
#'S07R', 'S08R', 'S09R', 'S10R', 'S11R', 'S12R', 'S13R', 'S14R', 'S15R', 'S16R', 'S17R', 'S18R',
#'S19R', 'S20R', 'S21R', 'S01P', 'S02P', 'S03P', 'S04P', 'S05P', 'S06P', 'S07P', 'S08P', 'S09P',
#'S10P', 'S11P', 'S12P', 'S13P', 'S14P', 'S15P', 'S16P', 'S17P', 'S18P', 'S19P', 'S20P', 'S21P']
#PA_bad = ['S10P', 'S11P', 'S13R', 'S14P', 'S08P']
#sensor_groups += [[s for s in tokamak.sensors('PA') if n in s.name] for n in PA_suffixes
# if n not in PA_bad]
no_filaments = 20
filaments = eigenmodes.ss_filaments(no_filaments)
(sensor_time, sensor_signal) = tokamak.get_sensor_time_signal(shot, sensor_groups[0][0].name)
all_sensors = []
for sensor_group in sensor_groups:
all_sensors += sensor_group
signals = tokamak.sensor_signal_dict(shot, all_sensors, None, None, False)
outfile = 'output/G_eigs_1.p'
loaded_G_eigs_1 = True
try: G_eigs_1 = pickle.load(open(outfile, 'rb'))
except IOError:
G_eigs_1 = {}
loaded_G_eigs_1 = False
dChi_sq_dI = np.zeros((len(sensor_time), 2))
for sensors in sensor_groups:
if len(sensors) == 0: continue
print sensors[0].name[0:2] + sensors[0].name[4:8]
(sensor_time, sensor_signal) = tokamak.get_sensor_time_signal(shot, sensors[0].name)
coil_field = fields.coil_field(coil_signal, coil, sensors[0])
if loaded_G_eigs_1:
G_eig_1 = G_eigs_1[sensors[0].name]
else:
G_eig_1 = 0
for f in filaments:
G_eig_1 += f.current_1*fields.greens_function(f.r, f.z-sensors[0].z, sensors[0].r,
sensors[0].n_r, sensors[0].n_z)
G_eigs_1[sensors[0].name] = G_eig_1
group_signals = [signals[s.name] for s in sensors]
for i, time in enumerate(sensor_time):
measurement_sum = 0
for signal in group_signals:
measurement_sum += signal[i]
measure_avg = measurement_sum/float(len(group_signals))
measure_stddev = np.std([s[i] for s in group_signals])
dChi_sq_dI[i][0] += -1*G_eig_1*(coil_field[i]-measure_avg)/measure_stddev**2
dChi_sq_dI[i][1] += G_eig_1**2/measure_stddev**2
I_eddy_time = np.zeros(len(sensor_time))
for i in range(len(sensor_time)):
I_eddy_time[i] = dChi_sq_dI[i][0]/dChi_sq_dI[i][1]
if not loaded_G_eigs_1: pickle.dump(G_eigs_1, open(outfile, 'wb'))
print 'Caculating chi-squared values'
chi_squares = np.zeros(len(I_eddy_time))
for sensors in sensor_groups:
if len(sensors) == 0: continue
print sensors[0].name[0:2] + sensors[0].name[4:8]
(sensor_time, sensor_signal) = tokamak.get_sensor_time_signal(shot, sensors[0].name)
coil_field = fields.coil_field(coil_signal, coil, sensors[0])
if loaded_G_eigs_1:
G_eig_1 = G_eigs_1[sensors[0].name]
else:
G_eig_1 = 0
for f in filaments:
G_eig_1 += f.current_1*fields.greens_function(f.r, f.z-sensors[0].z, sensors[0].r,
sensors[0].n_r, sensors[0].n_z)
G_eigs_1[sensors[0].name] = G_eig_1
group_signals = [signals[s.name] for s in sensors]
for i, time in enumerate(sensor_time):
measurement_sum = 0
for signal in group_signals:
measurement_sum += signal[i]
measure_avg = measurement_sum/float(len(group_signals))
measure_stddev = np.std([s[i] for s in group_signals])
chi_squares[i] += (coil_field[i] + I_eddy_time[i] - measure_avg)**2/measure_stddev**2
print 'Making plots'
plt.figure()
plt.plot(sensor_time, chi_squares)
plt.ylabel('Chi-squared value')
plt.xlabel('Seconds')
plt.xlim([.0015, .027])
plt.title('Chi-squared values over shot ' + shot)
plt.savefig('output/chi_squared_time.png')
plt.clf()
plt.figure()
plt.plot(sensor_time, I_eddy_time)
plt.ylabel('Eddy current magnitude (A)')
plt.xlabel('Seconds')
plt.xlim([.0015, .027])
plt.title('Eddy current magnitude over shot ' + shot)
plt.savefig('output/I_eddy_time.png')
plt.clf()
for sensors in sensor_groups:
if len(sensors) == 0: continue
suffix = sensors[0].name[0:2] + sensors[0].name[4:8]
print suffix
B_diffs = np.zeros((len(sensors), len(sensor_time)))
B_coil = fields.coil_field(coil_signal, coil, sensors[0])
for i, sensor in enumerate(sensors):
(sensor_time, sensor_signal) = tokamak.get_sensor_time_signal(shot, sensor.name)
B_diffs[i] = sensor_signal
B_diff_avg = np.mean(B_diffs, axis=0)
B_diff_sem = scipy.stats.sem(B_diffs, axis=0)
B_eddy = fields.filament_field(I_eddy_time, filaments, sensors[0])
B_composite = B_eddy + B_coil
fig = plt.figure()
plt.errorbar(sensor_time, B_diff_avg, yerr=B_diff_sem, fmt='-', linewidth=2, ecolor='#006BB2', alpha=0.25, label='<B_sensor>')
plt.plot(sensor_time, B_composite, 'r-', label='B_' + coil + '+B_eddy')
plt.plot(sensor_time, B_coil, '--', label='B_' + coil)
plt.xlim([.0015, .027])
plt.xlabel('Seconds')
plt.ylabel('Magnetic field strength (Tesla)')
plt.legend()
plt.title(suffix)
plt.savefig('output/eddy_images/' + suffix + '.png')
fig.tight_layout()
plt.clf()
os.system('rm -f output/eddy_images/montage.jpg')
os.system('montage -geometry +0+0 output/eddy_images/* output/eddy_images/montage.jpg')