-
Notifications
You must be signed in to change notification settings - Fork 6
/
train3_new_dup.py
616 lines (549 loc) · 19.6 KB
/
train3_new_dup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import cPickle as pkl
import numpy as np
import theano.tensor as T
import os
import sys
import datetime as DT
import shutil
import inspect
import theano
import warnings
import yaml
from tools import ModelMLP
from tools import NonLinearity
from tools import split_data_to_minibatchs_eval
from tools import sharedX_value
from tools import theano_fns
from tools import theano_fns_double_up
from learning_rule import AdaDelta
from learning_rule import RMSProp
from learning_rule import Momentum
from tools import evaluate_model
from tools import collect_stats_epoch
from tools import plot_stats
from tools import train_one_epoch
from tools import train_one_epoch_alter
from tools import to_categorical
from tools import plot_classes
from tools import chunks
from tools import plot_penalty_vl
from tools import plot_debug_grad
from tools import plot_debug_ratio_grad
from sklearn import manifold
from tools import plot_representations
# Parse the yaml config.
config_path = "./config_yaml/"
with open(config_path + sys.argv[1], 'r') as fy:
config_exp = yaml.load(fy)
x_classes = 10
debug_code = config_exp["debug_code"]
if debug_code:
warnings.warn("YOU ARE IN DEBUG MODE! YOUR CODE WILL TAKE MORE TIME!!!!!")
def standerize(d, mu=None, sigma=None):
if mu is None:
mu = np.mean(d, axis=0)
sigma = np.std(d, axis=0)
if sigma.nonzero()[0].shape[0] == 0:
raise Exception("std found to be zero!!!!")
norm_d = (d - mu) / sigma
return norm_d, mu, sigma
def get_inter_output(model, l_tst, testx_sh):
i_x_vl = T.lvector("ixtst")
eval_fn_tst = theano.function(
[i_x_vl],
[l.output for l in model.layers],
givens={model.x: testx_sh[i_x_vl]})
output_v = [
eval_fn_tst(np.array(l_tst[kkk])) for kkk in range(len(l_tst))]
nbr_layers = len(output_v[0])
l_val = []
for l in range(nbr_layers):
tmp = None
for k in output_v:
if tmp is None:
tmp = k[l]
else:
tmp = np.vstack((tmp, k[l]))
l_val.append(tmp)
return l_val
# create_tr_vl_ts_cb("data/2d")
# def knn1(model, l_tst, testx_sh, l_tr, trainx_sh):
# create_tr_vl_ts_nc("data/nestedcircle", 50000)
# DATA MNIST
# =============================================================================
path_data = "data/mnist.pkl"
f = open(path_data, 'r')
train, valid, test = pkl.load(f)
trainx, trainy = train[0], train[1]
validx, validy = valid[0], valid[1]
testx, testy = test[0], test[1]
# How much to take for training?
nbr_sup = config_exp["nbr_sup"]
run = config_exp["run"]
print "RUN:", run
print "SUP: ", nbr_sup
trainx, trainy = trainx[:nbr_sup], trainy[:nbr_sup]
# Prepare the pre-shuffling
if not os.path.exists("data/" + str(nbr_sup)):
os.makedirs("data/" + str(nbr_sup))
trainx_tmp = trainx
trainy_tmp = trainy
print trainy.shape
big_mtx = np.hstack((trainx_tmp, trainy_tmp.reshape(trainy_tmp.size, 1)))
print "Going to shuffle the train data. It takes some time ..."
period = 200
i = 0
#for k in xrange(5000):
# np.random.shuffle(big_mtx)
# if k % period == 0:
# trainx_tmp2 = big_mtx[:, 0:trainx_tmp.shape[1]]
# trainy_tmp2 = big_mtx[:, -1]
# stuff = {"x": trainx_tmp2, "y": trainy_tmp2}
# print k
# with open("data/"+str(nbr_sup) + "/" + str(i) + ".pkl", 'w') as f:
# pkl.dump(stuff, f, protocol=pkl.HIGHEST_PROTOCOL)
# i += 1
#with open("data/"+str(nbr_sup) + "/0.pkl") as f:
# stuff = pkl.load(f)
# trainx, trainy = stuff["x"], stuff["y"]
# share over gpu: we can store the whole mnist over the gpu.
# Train
trainx_sh = theano.shared(trainx.astype(theano.config.floatX),
name="trainx", borrow=True)
trainlabels_sh = theano.shared(trainy.astype(theano.config.floatX),
name="trainlabels", borrow=True)
trainy_sh = theano.shared(to_categorical(trainy, x_classes).astype(
theano.config.floatX), name="trainy", borrow=True)
# valid
validx_sh = theano.shared(validx.astype(theano.config.floatX),
name="validx", borrow=True)
validlabels_sh = theano.shared(validy.astype(theano.config.floatX),
name="validlabels", borrow=True)
#
input = T.fmatrix("x")
input1 = T.fmatrix("x1")
input2 = T.fmatrix("x2")
rng = np.random.RandomState(23455)
# Architecture
nhid_l0 = 1200
nhid_l1 = 1200
nhid_l2 = 200
nbr_classes = x_classes
use_batch_normalization = config_exp["use_batch_normalization"]
h_ind = config_exp["h_ind"]
h_ind = [int(tt) for tt in h_ind]
assert len(h_ind) == 4
h0, h1, h2, h3, h4, h5, h6, h7, h8 = None, None, None, None, None, None, None,\
None, None
l_v = []
for xx in h_ind:
print xx
if int(xx) == 1:
l_v.append(True)
elif int(xx) == 0:
l_v.append(False)
else:
raise ValueError("Error in applying hint: 0/1")
hint_type = "l2sum" # "l1mean"
print l_v
corrupt_input_l = config_exp["corrupt_input_l"]
if corrupt_input_l != 0.:
warnings.warn(
"YOU ASKED TO USE DENOISING PROCESS OVER THE INPUTS OF THE FIRST LAYER"
)
if not config_exp["hint"]:
raise ValueError(
"You asked for densoing process but you are not using the penalty")
start_corrupting = config_exp["start_corrupting"]
warnings.warn(
"CORRUPTION WILL START AFTER:" + str(start_corrupting) + " epochs!!!!!!")
use_sparsity = config_exp["use_sparsity"]
use_sparsity_in_pred = config_exp["use_sparsity_in_pred"]
print "Use sparsity: ", use_sparsity
print "Use sparsity in pred:", use_sparsity_in_pred
use_unsupervised = config_exp["use_unsupervised"]
layer0 = {
"rng": rng,
"n_in": trainx.shape[1],
"n_out": nhid_l0,
"W": None,
"b": None,
"activation": NonLinearity.SIGMOID,
"hint": hint_type,
"use_hint": l_v[0],
"intended_to_be_corrupted": True,
"corrupt_input_l": corrupt_input_l,
"use_sparsity": use_sparsity,
"use_sparsity_in_pred": use_sparsity_in_pred,
"use_unsupervised": use_unsupervised,
"use_batch_normalization": use_batch_normalization[0]
}
layer1 = {
"rng": rng,
"n_in": nhid_l0,
"n_out": nhid_l1,
"W": None,
"b": None,
"activation": NonLinearity.SIGMOID,
"hint": hint_type,
"use_hint": l_v[1],
"use_sparsity": use_sparsity,
"use_sparsity_in_pred": use_sparsity_in_pred,
"use_unsupervised": use_unsupervised,
"use_batch_normalization": use_batch_normalization[1]
}
layer2 = {
"rng": rng,
"n_in": nhid_l1,
"n_out": nhid_l2,
"W": None,
"b": None,
"activation": NonLinearity.SIGMOID,
"hint": hint_type,
"use_hint": l_v[2],
"use_sparsity": use_sparsity,
"use_sparsity_in_pred": use_sparsity_in_pred,
"use_unsupervised": use_unsupervised,
"use_batch_normalization": use_batch_normalization[2]
}
#layer3 = {
# "rng": rng,
# "n_in": nhid_l2,
# "n_out": nhid_l3,
# "W": None,
# "b": None,
# "activation": NonLinearity.SIGMOID,
# "hint": l_v[3]
# }
#
#layer4 = {
# "rng": rng,
# "n_in": nhid_l3,
# "n_out": nhid_l4,
# "W": None,
# "b": None,
# "activation": NonLinearity.SIGMOID,
# "hint": l_v[4]
# }
#
#layer5 = {
# "rng": rng,
# "n_in": nhid_l4,
# "n_out": nhid_l5,
# "W": None,
# "b": None,
# "activation": NonLinearity.SIGMOID,
# "hint": l_v[5]
# }
#
#layer6 = {
# "rng": rng,
# "n_in": nhid_l5,
# "n_out": nhid_l6,
# "W": None,
# "b": None,
# "activation": NonLinearity.SIGMOID,
# "hint": l_v[6]
# }
#
#layer7 = {
# "rng": rng,
# "n_in": nhid_l6,
# "n_out": nhid_l7,
# "W": None,
# "b": None,
# "activation": NonLinearity.SIGMOID,
# "hint": l_v[7]
# }
output_layer = {
"rng": rng,
"n_in": nhid_l2,
"n_out": nbr_classes,
"W": None,
"b": None,
"activation": NonLinearity.SOFTMAX,
"hint": hint_type,
"use_hint": l_v[3],
"use_sparsity": False,
"use_sparsity_in_pred": False,
"use_unsupervised": use_unsupervised,
"use_batch_normalization": use_batch_normalization[3]
}
layers = [layer0, layer1, layer2, output_layer]
l1, l2 = 0., 0.
reg_bias = True
margin = sharedX_value(1., name="margin")
similair = theano.shared(np.array([0, 1], dtype=theano.config.floatX),
name="sim")
model = ModelMLP(layers, input, input1, input2,
trainx_sh, trainlabels_sh, trainy_sh,
validx_sh, validlabels_sh, margin, similair,
l1_reg=l1, l2_reg=l2,
reg_bias=reg_bias)
size_model = str(trainx.shape[1]) +\
'_'.join([str(l["n_in"]) for l in layers]) + "_" + str(nbr_classes)
path_model_init_params = "init_params/" + size_model + '_' +\
str(config_exp["repet"]) + ".pkl"
if not os.path.isfile(path_model_init_params):
model.save_params(path_model_init_params, catched=False)
else:
model.set_params_vals(path_model_init_params)
train_batch_size = 100
valid_batch_size = 1000
max_epochs = config_exp["max_epochs"]
lr_vl = 1e-7
lr = sharedX_value(lr_vl, name="lr")
h_w = sharedX_value(config_exp["h_w"], name="hw")
s_w = sharedX_value(1., name="sw")
unsup_w = sharedX_value(1., name="unsw")
lambda_sparsity = sharedX_value(0., name="l_sparsity")
# Compile functions: train/valid
updater_sup = AdaDelta(decay=0.95)
updater_hint = AdaDelta(decay=0.95)
updater_unsup = AdaDelta(decay=0.95)
updater = {"sup": updater_sup, 'hint': updater_hint, "unsup": updater_unsup}
# updater = Momentum(0.9, nesterov_momentum=False, imagenet=False,
# imagenetDecay=5e-4, max_colm_norm=False)
hint = config_exp["hint"]
# "hint", "noHint"
if hint:
tag = "hint"
else:
tag = "noHint"
norm_gsup = config_exp["norm_gsup"]
norm_gh = config_exp["norm_gh"]
fns = theano_fns_double_up(
model, learning_rate=lr,
h_w=h_w, s_w=s_w, unsup_w=unsup_w, lambda_sparsity=lambda_sparsity,
updater=updater, tag=tag,
max_colm_norm=False, max_norm=15.0,
norm_gsup=norm_gsup, norm_gh=norm_gh)
eval_fn, eval_fn_tr = fns["eval_fn"], fns["eval_fn_tr"]
# Things to track during training: epoch and minibatch
train_stats = {"tr_error_ep": [], "vl_error_ep": [], "tr_cost_ep": [],
"tr_error_mn": [], "vl_error_mn": [], "tr_cost_mn": [],
"current_nb_mb": 0, "best_epoch": 0, "best_mn": 0}
names = []
for l, i in zip(layers, range(len(layers))):
if l["hint"] is not None:
names.append(i)
debug = {"grad_sup": [], "grad_hint": [], "penalty": [], "names": names}
# Eval before start training
l_vl = chunks(range(validx.shape[0]), valid_batch_size)
l_tr = chunks(range(trainx.shape[0]), valid_batch_size)
vl_err_start = np.mean(
[eval_fn(np.array(l_vl[kk])) for kk in range(len(l_vl))])
tr_err_start = np.mean(
[eval_fn_tr(np.array(l_tr[kk])) for kk in range(len(l_tr))])
print vl_err_start, tr_err_start
# Exp stamp
time_exp = DT.datetime.now().strftime('%m_%d_%Y_%H_%M_%s')
tag_text = "_".join([str(l["hint"]) for l in layers])
h_exp = "_".join([str(e) for e in h_ind])
fold_exp = "exps/" + tag + "_" + str(nbr_sup) + "_" + h_exp + "_" +\
size_model + "_" + time_exp
if not os.path.exists(fold_exp):
os.makedirs(fold_exp)
shutil.copy(inspect.stack()[0][1], fold_exp)
shutil.copy(config_path+sys.argv[1], fold_exp)
# Start training
stop, i = False, 0
div = any([l["hint"] is "contrastive" for l in layers])
shuffle_period = 1 # epochs
do_shuffle = True
extreme_random = config_exp["extreme_random"]
if extreme_random:
print "Extreme randomness."
else:
print "Same shuffle."
kk = 1
# TEST BEFORE START TRAINING
testx_sh = theano.shared(testx.astype(theano.config.floatX),
name="testx", borrow=True)
testlabels_sh = theano.shared(testy.astype(theano.config.floatX),
name="testlabels", borrow=True)
i_x_vl = T.lvector("ixtst")
y_vl = T.vector("y")
error = T.mean(T.neq(T.argmax(model.output, axis=1), y_vl))
output_fn_test = [error, model.output, model.layers[-2].output]
eval_fn_tst = theano.function(
[i_x_vl], output_fn_test,
givens={model.x: testx_sh[i_x_vl],
y_vl: testlabels_sh[i_x_vl]})
l_tst = chunks(range(testx.shape[0]), valid_batch_size)
test_error_l = [eval_fn_tst(np.array(l_tst[kkk])) for kkk in range(len(l_tst))]
print test_error_l[0][0]
test_error = np.mean([l[0] for l in test_error_l])
print "Test error:", test_error
prediction = None
for l in test_error_l:
if prediction is None:
prediction = l[1]
else:
prediction = np.vstack((prediction, l[1]))
with open(fold_exp+"/pred_before.pkl", "w") as fp:
pkl.dump({"y": testy, "pred": prediction}, fp)
best_vl_error = np.finfo(np.float).max
start_hint_epoch = config_exp["start_hint"]
while i < max_epochs:
if i >= start_corrupting:
warnings.warn(
"SETTING THE CORRUPTION LEVEL TO:" + str(corrupt_input_l))
model.layers[0].corrupt_input_l.set_value(
np.cast[theano.config.floatX](corrupt_input_l))
else:
warnings.warn("SETTING THE CORRUPTION LEVEL TO: 0")
model.layers[0].corrupt_input_l.set_value(
np.cast[theano.config.floatX](0.))
stop = (i == max_epochs - 1)
tx = DT.datetime.now()
stats = train_one_epoch_alter(
model, fns, i, fold_exp, train_stats, vl_err_start, tag,
train_batch_size, l_vl, l_tr, div, stop=stop,
debug=debug, debug_code=debug_code, h_w=h_w)
txx = DT.datetime.now()
print "CORRUPTION LEVEL VALUE: " +\
str(model.layers[0].corrupt_input_l.get_value())
print "One epoch", DT.datetime.now() - tx
train_stats = collect_stats_epoch(stats, train_stats)
if (i % 100 == 0 or stop) and debug_code:
plot_debug_grad(debug, tag_text, fold_exp, "sup")
plot_penalty_vl(debug, tag_text, fold_exp)
if tag == "hint":
plot_debug_grad(debug, tag_text, fold_exp, "hint")
plot_debug_ratio_grad(debug, fold_exp, "h/s")
plot_debug_ratio_grad(debug, fold_exp, "s/h")
if stop:
plot_stats(train_stats, "ep", fold_exp, tag)
with open(fold_exp + "/train_stats.pkl", 'w') as f_ts:
pkl.dump(train_stats, f_ts)
with open(fold_exp + "/train_debug.pkl", 'w') as f_ts:
pkl.dump(debug, f_ts)
i += 1
# shuffle the data
print "Going to shuffle the train data."
if do_shuffle and i % shuffle_period == 0 and not stop:
if extreme_random:
trainx_tmp = model.trainx_sh.get_value()
trainy_tmp = model.trainlabels_sh.get_value()
big_mtx = np.hstack(
(trainx_tmp, trainy_tmp.reshape(trainy_tmp.size, 1)))
for k in xrange(5):
np.random.shuffle(big_mtx)
trainx_tmp = big_mtx[:, 0:trainx_tmp.shape[1]]
trainy_tmp = big_mtx[:, -1]
else:
with open("data/"+str(nbr_sup) + "/" + str(kk) + ".pkl") as f:
stuff = pkl.load(f)
trainx_tmp, trainy_tmp = stuff["x"], stuff["y"]
model.trainlabels_sh.set_value(trainy_tmp.astype(theano.config.floatX))
model.trainy_sh.set_value(
to_categorical(
trainy_tmp, nbr_classes).astype(theano.config.floatX))
model.trainx_sh.set_value(trainx_tmp.astype(theano.config.floatX))
kk += 1
if kk > 240:
kk = 0
print "Finished loading shuffled data. Updated the train set on GPU."
del stats
print "This part took:", DT.datetime.now() - txx
print "MIN VALID ", np.min(train_stats["vl_error_mn"]), " *********"
# # If there was no improvement...
if (i > start_hint_epoch) and hint:
# new_v = min([1., h_w.get_value() + 0.01])
new_v = 1.
h_w.set_value(np.cast[theano.config.floatX](new_v))
# print "NO IMPROV. PUSHING THE NET..............................."
# best_vl_error = np.min(train_stats["vl_error_mn"])
# Update the importance of the hint
# if i >= 1:
# # new_v = min([1., h_w.get_value() + 0.1])
# h_w.set_value(np.cast[theano.config.floatX](1.))
# Perform the test
# Set the model's param to the best catched ones
model.set_model_to_catched_params()
# share test data
test_error_l = [eval_fn_tst(np.array(l_tst[kkk])) for kkk in range(len(l_tst))]
train_error_l = [eval_fn_tst(np.array(l_tr[kkk])) for kkk in range(len(l_tr))]
test_error = np.mean([l[0] for l in test_error_l])
print "Test error:", test_error
# Train
# Test
# last hidden layer representations.
with open(fold_exp+"/last_hidden_rep_test.pkl", "w") as fhr:
stuff_hrep_tst = None
for k in test_error_l:
if stuff_hrep_tst is None:
stuff_hrep_tst = l[2]
else:
stuff_hrep_tst = np.vstack((stuff_hrep_tst, l[2]))
stuff_hrep_tr = None
for k in train_error_l:
if stuff_hrep_tr is None:
stuff_hrep_tr = l[2]
else:
stuff_hrep_tr = np.vstack((stuff_hrep_tr, l[2]))
pkl.dump(
{"x_hint_repr_tst": stuff_hrep_tst, "y_tst": testy, "ximg_tst": testx,
"x_hint_repr_tr": stuff_hrep_tr, "y_tr": trainy, "ximg_tr": trainx},
fhr)
# plot t-SNE of the opriginal images
tx0 = DT.datetime.now()
tsne_original = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne_original = tsne_original.fit_transform(testx)
fig_tsne_org = plot_representations(
X_tsne_original, testy, "t-SNE embedding of mnist original images.")
fig_tsne_org.savefig(fold_exp+"/original_rep_test.eps", format='eps',
dpi=1200, bbox_inches='tight')
print "t-SNE of original images took:", DT.datetime.now() - tx0
# plot t-SNE of the prediction
tx0 = DT.datetime.now()
tsne_lasthidden_rep = manifold.TSNE(n_components=2, init='pca',
random_state=0)
X_tsne_lhrep = tsne_original.fit_transform(stuff_hrep_tst)
fig_tsne_lhrep = plot_representations(
X_tsne_lhrep, testy,
"t-SNE embedding of the last hidden representation of the MLP" +
"applied over mnist.")
fig_tsne_lhrep.savefig(fold_exp+"/lasth_rep_mlp_test.eps", format='eps',
dpi=1200, bbox_inches='tight')
print "t-SNE of hidden representation took:", DT.datetime.now() - tx0
prediction = None
for l in test_error_l:
if prediction is None:
prediction = l[1]
else:
prediction = np.vstack((prediction, l[1]))
with open(fold_exp+"/pred_after.pkl", "w") as fp:
pkl.dump({"y": testy, "pred": prediction}, fp)
##############################################################################
# GET INTERMEDIATE VALUE AND PLOT THEM. POSSIBLE ONLY WHEN THE INTERMEDIATE
# VALUES ARE 2D.
# inter_vl = get_inter_output(model, l_tst, testx_sh)
# plot the intermediate values
# ll = 0
# for vi in inter_vl:
# fig = plot_classes(
# testy_int, vi, "", test_error,
# "pred. 2D: mnist 1/7. layer" + str(ll))
# fig.savefig(
# fold_exp + "/predinterlayer" + str(ll) + ".png", bbox_inches='tight')
# ll += 1
###############################################################################
# fig_scatter = plot_classes(y=testy_int, cord=prediction, names=cs,
# test_error=test_error, message="AFTER train")
# fig_scatter.savefig(fold_exp+"/pred_after.png", bbox_inches='tight')
# save min valid
vl_pathfile = "exps/" + "run_" + str(run) + "_sup_" + str(nbr_sup) + "_" +\
h_exp + "_c_l_" + str(corrupt_input_l) + "_start_at_" +\
str(start_corrupting) + "_debug_" + str(debug_code) +\
"_use_sparse_" + str(use_sparsity) + "_use_spar_pred_" +\
str(use_sparsity_in_pred) + "_" + "norm_" + str(norm_gsup) + "_" +\
str(norm_gh) + "_" + time_exp + ".txt"
with open(vl_pathfile, 'w') as f:
f.write("Exp. folder: " + fold_exp + "\n")
f.write(
"valid error:" + str(
np.min(train_stats["vl_error_mn"]) * 100.) + " % \n")
f.write("Test error:" + str(test_error * 100.) + " % \n")
shutil.copy(vl_pathfile, fold_exp)