-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_data.R
98 lines (62 loc) · 2.79 KB
/
process_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
library(tidyverse)
read_collected_files <- function(inputdir,
file_name_string,
series_switch,
series_regex) {
file_name <- paste0(inputdir,file_name_string)
file <- read.csv(file_name, header = TRUE)
# TODO needs to default to sensible value if nothing found
if (series_switch) {
file$series <- str_extract(file$identifier, series_regex)
file$identifier <- str_remove(file$identifier, series_regex)
file$identifier <- str_remove(file$identifier, "(_|-| )($)")
}
return (file)
}
process_cell_measurements <- function(data,
lower,
upper,
check_measureChannelCell,
check_measureChannelOrganelle,
filter) {
# filter data based on ferets diatmeter
if (filter) {
data_filter <- subset(data, ferets >= lower & ferets <= upper)
} else {
data_filter <- data
}
# background subtraction for mean organelle intensity per cell
data_filter$orgaMeanIntensityBacksub <-
data_filter$orgaMeanIntensity - data_filter$orgaMeanBackground
if (check_measureChannelCell && check_measureChannelOrganelle) {
data_filter$measureMeanIntensityBacksub <-
data_filter$measureMeanIntensity - data_filter$measureMeanBackground
}
return (data_filter)
}
process_orga_measurements <- function(cell_data,
orga_data,
check_measureChannelCell,
check_measureChannelOrganelle) {
merge <- merge(cell_data,
orga_data,
by = c("identifier", "series", "cell"))
# background subtraction for detection intensity
merge$orgaDetectionPeakBacksub <- merge$orgaDetectionPeak - merge$orgaMeanBackground
if (check_measureChannelCell && check_measureChannelOrganelle) {
merge$measureDetectionPeakBacksub <- merge$measureDetectionPeak - merge$measureMeanBackground
}
merge$detectionDistanceNormalized <- merge$detectionDistanceCalibrated / merge$ferets
return (merge)
}
create_summary_table <- function(full_table,
cell_data) {
summary <- full_table %>%
group_by(identifier, series, cell) %>%
summarise(across(detectionDistanceRaw:detectionDistanceNormalized, ~ mean(.x, na.rm =TRUE) ), .groups = 'drop') %>%
rename_at(vars(-identifier, -series, -cell),function(x) paste0(x,".mean"))
merge <- merge(cell_data,
summary,
by = c("identifier", "series", "cell"))
return (merge)
}