This repository has been archived by the owner on Oct 27, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 504
/
Copy pathoctave_cheat_sheet.txt
275 lines (185 loc) · 4.14 KB
/
octave_cheat_sheet.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
% octave cheatsheet
% not equals(~=)
1 ~=2 % => 1
% change prompt
PS1('>> ');
% semicolon suppresses output
% print
disp( 1+1)
disp(sprintf('2 decimals: %0.2f', 3.146))
format long
format short
% matrix
A = [1 2; 3 4 ; 5 6]
A =
1 2
3 4
5 6
% vector
v = [1; 2; 3]
% range fat vector
v = 1: 0.1: 1.5
v =
1.0000 1.1000 1.2000 1.3000 1.4000 1.5000
% matrix of ones
ones(2,3)
ans =
1 1 1
1 1 1
zeroes(1,3) % matrix of zeroes
rand(3,3) % matrix of random numbers
eye(3) # identity matrix
ans =
Diagonal Matrix
1 0 0
0 1 0
0 0 1
v = [1,2,3,4]
% length returns longest dimension
length(v) % => 4
% size returns matrix of size
size(v) % => [1,4]
% working with files
load file
load featuresX.dat
who % shows variables in current scope
whos % shows variables and size
clear featuresX % removes variable featuresX
% save to disk
v = [1;2;3;4;5]
save hello.mat v; % saves v to file hello.mat
clear % removes all variables in workspace
save hello.mat v -ascii; % save as text
A(3,2) % gets the value on row 3, column 2
A(2,:) % get every element in row 2
A = [A, [100; 101; 102]] % append another column to a
% ==============================
A = [1 2 ; 3 4 ; 5 6]
B = [11 12; 13 14; 15 16]
C = [1 1; 2 2]
% element wise multiplication (.*)
A .* B
ans =
11 24
39 56
75 96
abs(A) % absolute value
% transpose
A'
ans =
1 3 5
2 4 6
A = magic(3) % magic squares, all rows columns and diagonals add up to the same thing
[r,c] = find(A >= 7)
r =
1
3
2
c =
1
2
3
sum(A, 1) % sums rows
sum(A, 2) % sums columns
prod
floor
ceil
flipud(A) % flips matrix up down
pinv(A) % gives the inverse of A
% plotting
t = [0:0.01: 0.98];
y1 = sin(2*pi*4*t);
plot(t, y1);
y2 = cos(2*pi*4*t)
plot(t,y1);
hold on
plot(t,y2);
plot(t,y2, 'r');
xlabel('time')
ylabel('value')
legend('sin', 'cos')
title('my plot')
print -dpng 'myplot.png'
close
figure(1); plot(t,y1);
figure(2); plot(t,y2);
subplot(1,2,1); %divides plot a 1x2 grid access first element
plot(t, y1);
subplot(1,2,2)
plot(t, y2)
clf % clears figure
imagesc(A), colorbar, colormap gray;
% =================================
v = zeros(10,1)
for i = 1:10,
v(i) = 2^i;
end
indicies = 1:10
for i = indices,
disp(i);
end;
i = 1;
while i <= 5,
v(i) = 100;
i = i+1;
end;
i = 1;
while true,
v(i) = 999;
i = i + 1;
if i == 6,
break;
end;
end;
v(1) = 2
if v(1) = 2;
disp('the value is one');
elseif v(1) == 2,
disp('the value is true');
else
disp("the value is not one or two.");
end;
squareThisNumber.m
function y = squareThisNmber(x)
y = x^2;
suareAndCuebeThisNumber.m
function [y1,y2] = squareAndCubeThisNumber(x)
y1 = x^2;
y2 = x^3;
X = [1 1; 1 2; 1 3]
y = [1; 2; 3]
theta = [0;1];
costFunctionJ.m
function J = costFunctionJ(X, y, theta)
% X is the 'design matrix' containing our training examples
% y is the class labels
m = size(X, 1) % number of training examples
predictions = X*theta; % predictions of hypothesis on examples
sqrErrors = (predictions - y).^2; % squared errors
J = 1/(2*m) * sum(sqrErrors);
J % => 0
Theta1 = ones(10,11);
Theta2 = ones(10,11);
Theta3 = 3*ones(10,11);
thetaVec = [ Theta1(:); Theta2(:); Theta3(:)];
Theta1 == reshape(thetaVec(1:110), 10, 11)
gradApprox = (J(theta = EPSILON) - J(theta - EPSILON))/(2*EPSILON)
for i = 1:n,
thetaPlus = theta;
thetaPlus(i) = thetaPlus(i) + EPSILON;
thetaMinus = theta;
thetaMinus(i) = thetaMinus(i) - EPSILON;
gradApprox(i) = (J(thetaPlus) - J(thetaMinus))/(2*EPSILON);
end
% check that gradApprox ~ DVec
% - implement backprom to compute DVec (unrolled D1, D2, D3)
% - implement numerical gradient check to compute gradApprox
% - make sure they give similar values
% - TURN OFF gradient checking using backprob code for learning with
% NO gradient checking
optTheta = fminunc(@costFunction, initialTheta, options);
initialTheta = zeros(n,1); % can we do better?
% INIT_EPSILON is unrelated to EPSILON
Theta1 = rand(10,11) * (2*INIT_EPSILON) - INIT_EPSILON;
Theta1 = rand(1,11) * (2*INIT_EPSILON) - INIT_EPSILON;
load('ex3data1.mat');