-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path3_mpc_predicted_v2.py
212 lines (158 loc) · 7.87 KB
/
3_mpc_predicted_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
This script runs an MPC emulation using the zone model (R2C2.fmu)
and using occupancy predictions from Fisayo. New predictions
are generated for each optimization horizon.
The results are saved in "results/mpc".
"""
import os
import logging
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mshoot
from occupancy.main import Prediction_Strategy
logging.basicConfig(filename='mpc.log', filemode='w', level='WARNING')
np.random.seed(140417)
# Zones
#zones = ['22-511-2', '20-601b-2']
zones =['20-601b-2']
# Emulation period and settings
emu_start = pd.to_datetime('2018-04-05 00:00:00') # FISAYO, this time is 0s
emu_stop = pd.to_datetime('2018-04-08 00:00:00') # 3 days for testing, can be 7 days (Apr 12) for paper
emu_step = 60 # optimization time discretization, integer, number of minutes, minimum 30
emu_horizon = 480 # optimization horizon, integer, number of minutes, must be a multiple of emu_step -- WE CHANGE ONLY THIS BETWEEN CASES
# Number of steps within the horizon - do not modify
hrz_steps = int(emu_horizon / emu_step)
for zone in zones:
print('Running zone {}...'.format(zone))
# Output directory
out = os.path.join('new_results', 'mpc_predicted_occ_v2', '{}_qr_200'.format(emu_horizon), zone)
if os.path.exists(out):
print('Skipping {}...'.format(out))
else:
os.makedirs(out)
# Read parameters
parcsv = os.path.join('results', 'calibration', zone, 'parameters.csv')
parameters = pd.read_csv(parcsv).iloc[0].to_dict()
# Control and emulation models
fmupath = os.path.join('models', 'MShootBS2019_ZoneCO2R2C2.fmu')
outputs = ['T', 'CO2', 'qv', 've', 'qr', 'Tout']
states = ['cair.T', 'cint.T']
model_emu = mshoot.SimFMU(fmupath, outputs, states, parameters)
model_ctr = mshoot.SimFMU(fmupath, outputs, states, parameters)
# Inputs for the emulation model
meascsv = os.path.join('measurements', zone, 'measurements.csv')
meas = pd.read_csv(meascsv)
meas['datetime'] = pd.to_datetime(meas['datetime'])
meas = meas[(meas['datetime'] >= emu_start) & (meas['datetime'] <= emu_stop)]
meas = meas.set_index('datetime')
meas = meas.resample('{}min'.format(emu_step)).mean()
meas = meas.reset_index()
meas['time'] = (meas['datetime'] - meas['datetime'].iloc[0]).dt.total_seconds().astype(int)
meas['hour'] = meas['datetime'].dt.hour
meas = meas.set_index('time')
meas['dpos']=0
meas.to_csv(os.path.join(out, 'meas.csv'))
inp_emu = meas[['solrad', 'Tout', 'occ', 'dpos', 'vpos']]
#inp_emu['dpos']=0.
#inp_ctr=meas[['solrad','Tout','dpos','vpos']].copy()
#inp_ctr['dpos']=0.
#occ_predefined=np.where((meas['hour'] >= 8) & (meas['hour'] < 18), 0., 0.)
#inp_ctr['occ']=occ_predefined
# Time in seconds vs. time in datetime
tindex = meas[['datetime']]
tindex.to_csv(os.path.join(out, 'tindex.csv'))
# Constraints
tlo = np.where((meas['hour'] >= 8) & (meas['hour'] < 18), 21. + 273.15, 16. + 273.15)
thi = np.where((meas['hour'] >= 8) & (meas['hour'] < 18), 23. + 273.15, 27. + 273.15)
constr = pd.DataFrame(index=meas.index.copy())
constr['Tair_lo'] = tlo
constr['Tair_hi'] = thi
constr['Tint_lo'] = 273.15
constr['Tint_hi'] = 333.15
#constr['CO2_lo'] = 400.
#constr['CO2_hi'] = 800.
constr.to_csv(os.path.join(out, 'constr.csv'))
# Cost function
def cfun(xdf, ydf):
"""
:param ydf: DataFrame, model states
:param ydf: DataFrame, model outputs
:return: float
"""
# Minimize heating and ventilation energy consumption (ventilation + radiator)
#Tout = ydf['Tout'] + 273.15
#Tin = (ydf['T'] - Tout) * 0.8 + Tout
#qv = 1005 * ydf['ve'] * 0.01 * parameters['maxVent'] / 3600. * 1.2 * (294.15 - Tin) #/1000.
#qv = np.where(qv > 0, qv, 0)
return (ydf['qr'].abs()).sum() # @TAO: divide by some number if objective function becomes too big
# Callback function generating inputs for the control model
# HERE WE PUT NEW OCCUPANCY FORECASTS FOR EACH OPTIMIZATION HORIZON
def inp_clb(index):
"""
This function is passed to the MPC emulation and called whenever
MPC needs new forecasts. It is called at the beginning of
each optimization horizon. `index` is a list with time in seconds
since the beginning of simulation. To avoid floating-point errors,
seconds should be given as integers, e.g.:
- [0, 1800, 3600, 5400] - first optimization horizon,
- [5400, 7200, 9000, 10800] - second optimization horizon.
The length of index and time steps might change.
They depend on the settings of the MPC emulation.
:param index: list of integers
:return: pd.Dataframe
"""
# Take all inputs from measurements
inp = meas[['solrad', 'Tout', 'occ', 'dpos', 'vpos']].loc[index]
inp['dpos']=0.
# Replace occupancy with a forecast
# NOTE: Double-check time alignment of occupancy with other (e.g. occupancy on Volta is 1h ahead of time)
datetime_start = meas['datetime'].loc[index[0]] # First datetime
datetime_stop = meas['datetime'].loc[index[-1]] # Last datetime
time_step = index[1] - index[0] # Time resolution in seconds
# EXAMPLE HOW TO CALL THE FUNCTION
strategy = Prediction_Strategy()
timestamp = str(datetime_start) #ANYTIME
room = zone # ROOM CAN BE 20-604b-1, 22-511-2, OU44, 22-508-1, 20-601b-2
look_forward = int((datetime_stop - datetime_start).total_seconds()/60) # IN MINUTES
resample = emu_step # IN MINUTES
prediction = strategy.predict(timestamp, room, look_forward, resample) # IT RETURNS THE PREDICTION AND RAW COUNT
prediction.index = index
inp['occ'] = prediction #.. TODO: ---------------------------------------------------------------------> FISAYO
# Make sure number of rows equals the length of index
assert inp.index.size == len(index), 'Incorrect number of rows in Dataframe returned by inp_clb'
inp.to_csv(os.path.join(out, "inp_ctr_{}.csv".format(index[0])))
return inp
# Start MPC emulation
mpc = mshoot.MPCEmulation(model_emu, cfun)
x0 = [294.15, 294.15] # Indoor temperature [K], indoor thermal mass [K], indoor CO2 [ppm]
t0 = time.time()
u, xctr, xemu, yemu, u_hist = mpc.optimize(
model=model_ctr,
inp_ctr=None,
inp_clb=inp_clb,
inp_emu=inp_emu,
free=['vpos'],
ubounds=[(-200., 200.)],
xbounds=[(constr['Tair_lo'].values, constr['Tair_hi'].values),
(constr['Tint_lo'].values, constr['Tint_hi'].values)],
#(constr['CO2_lo'].values, constr['CO2_hi'].values)],
x0=x0,
maxiter=250,
ynominal=[300., 800., 5000., 4800., 4000., 300.], # ['T', 'CO2', 'qv', 've', 'qr', 'Tout']
step=1,
horizon=hrz_steps
)
cputime = int(time.time() - t0)
with open(os.path.join(out, 'cputime.txt'), 'w') as f:
f.write("{}\n".format(cputime))
# Save results
u.to_csv(os.path.join(out, 'u.csv'))
xctr.to_csv(os.path.join(out, 'xctr.csv'))
xemu.to_csv(os.path.join(out, 'xemu.csv'))
yemu.to_csv(os.path.join(out, 'yemu.csv'))
i = 1
for ui in u_hist:
ui.to_csv(os.path.join(out, 'u{}.csv'.format(i)))
i += 1