-
Notifications
You must be signed in to change notification settings - Fork 9
/
gsa_pareto_plt.py
55 lines (45 loc) · 1.89 KB
/
gsa_pareto_plt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#Author: David Zhen Yin
#Contact: [email protected]
#Date: August 17, 2019
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def gsa_pareto_plt(GSA_dataframe):
'''
Pareto plot to display sensitivity analysis results.
Args:
GSA_dataframe: main sensitivity of parameters measured from DGSA, (pd.DataFrame)data frame.
Output:
Pareto Plot for the GSA
'''
GSA_dataframe = GSA_dataframe.sort_values(by=0, ascending=False)
#############Define the colour bar #########
n_parameter = len(GSA_dataframe)
n_sensitive = len(GSA_dataframe.values[GSA_dataframe.values >=1])
if n_parameter>=20:
if n_parameter - n_sensitive > 6:
n_plt_para = len(GSA_dataframe.values[GSA_dataframe.values >=1])+6
else:
n_plt_para = n_parameter
else:
n_plt_para = n_parameter
pltdata = GSA_dataframe.values[:n_plt_para,0]
mask= pltdata <= 1
### red
colors = np.asarray([[1, 0, 0, 1.0]]*n_plt_para)
###blue
colors[mask] = [0, 0, 1, 1.0]
#### red
colors[:,3]= (abs(pltdata-max(pltdata[mask]))/abs(max(pltdata)-max(pltdata[mask])))**0.3
#### blue
colors[:,3][mask]= (np.sqrt(colors[mask][:,3]/(max(colors[mask][:,3]))))**2
plt.figure(figsize=(12,5))
plt.bar(np.arange(n_plt_para), pltdata, width=0.85, color = colors,edgecolor='k', linewidth=0.5,)
plt.xlim([-0.6,n_plt_para])
plt.ylim([min(pltdata[:n_plt_para]-0.2), max(pltdata[:n_plt_para]+0.05)])
plt.xticks(np.arange(n_plt_para), GSA_dataframe.index[:n_plt_para], fontsize=15, rotation =70)
plt.yticks(fontsize=16)
plt.axhline(y=1, linestyle = '--', c ='k')
plt.ylabel('Sensitivity measurements', fontsize=16)
plt.title('Global sensitivity of parameters to responses (by DGSA)', fontsize=18, loc='left', style='italic')
plt.xlabel('Parameters', fontsize=17)