From 47068e517004d90f13c16352bb3b4cafd53a00cd Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 3 Sep 2023 15:12:08 +0300 Subject: [PATCH] speculative : PoC for speeding-up inference via speculative sampling (#2926) * speculative : initial example * speculative : print encoding speed * speculative : add --draft CLI arg --- common/common.cpp | 140 ++++++++++++++++ common/common.h | 36 +++++ examples/CMakeLists.txt | 1 + examples/main/main.cpp | 136 +++------------- examples/speculative/CMakeLists.txt | 8 + examples/speculative/speculative.cpp | 234 +++++++++++++++++++++++++++ 6 files changed, 440 insertions(+), 115 deletions(-) create mode 100644 examples/speculative/CMakeLists.txt create mode 100644 examples/speculative/speculative.cpp diff --git a/common/common.cpp b/common/common.cpp index a1c3dc7805361..313821375df02 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -305,6 +305,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.n_keep = std::stoi(argv[i]); + } else if (arg == "--draft") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_draft = std::stoi(argv[i]); } else if (arg == "--chunks") { if (++i >= argc) { invalid_param = true; @@ -317,6 +323,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.model = argv[i]; + } else if (arg == "-md" || arg == "--model-draft") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.model_draft = argv[i]; } else if (arg == "-a" || arg == "--alias") { if (++i >= argc) { invalid_param = true; @@ -638,6 +650,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stdout, " --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); fprintf(stdout, " --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); fprintf(stdout, " --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); + fprintf(stdout, " --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); if (llama_mlock_supported()) { fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); @@ -669,6 +682,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); fprintf(stdout, " -m FNAME, --model FNAME\n"); fprintf(stdout, " model path (default: %s)\n", params.model.c_str()); + fprintf(stdout, " -md FNAME, --model-draft FNAME\n"); + fprintf(stdout, " draft model for speculative decoding (default: %s)\n", params.model.c_str()); fprintf(stdout, " -ld LOGDIR, --logdir LOGDIR\n"); fprintf(stdout, " path under which to save YAML logs (no logging if unset)\n"); fprintf(stdout, "\n"); @@ -832,6 +847,130 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector & last_tokens, + std::vector & candidates, + int idx) { + const int n_ctx = llama_n_ctx(ctx); + const int n_vocab = llama_n_vocab(ctx); + + const float temp = params.temp; + const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; + const float top_p = params.top_p; + const float tfs_z = params.tfs_z; + const float typical_p = params.typical_p; + const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; + const float repeat_penalty = params.repeat_penalty; + const float alpha_presence = params.presence_penalty; + const float alpha_frequency = params.frequency_penalty; + const int mirostat = params.mirostat; + const float mirostat_tau = params.mirostat_tau; + const float mirostat_eta = params.mirostat_eta; + const bool penalize_nl = params.penalize_nl; + + llama_token id = 0; + + float * logits = llama_get_logits(ctx) + idx * n_vocab; + + // Apply params.logit_bias map + for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { + logits[it->first] += it->second; + } + + candidates.clear(); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + + llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; + + if (ctx_guidance) { + llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); + } + + // apply penalties + if (!last_tokens.empty()) { + const float nl_logit = logits[llama_token_nl(ctx)]; + const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx); + + llama_sample_repetition_penalty(ctx, &cur_p, + last_tokens.data() + last_tokens.size() - last_n_repeat, + last_n_repeat, repeat_penalty); + llama_sample_frequency_and_presence_penalties(ctx, &cur_p, + last_tokens.data() + last_tokens.size() - last_n_repeat, + last_n_repeat, alpha_frequency, alpha_presence); + + if (!penalize_nl) { + for (size_t idx = 0; idx < cur_p.size; idx++) { + if (cur_p.data[idx].id == llama_token_nl(ctx)) { + cur_p.data[idx].logit = nl_logit; + break; + } + } + } + } + + if (grammar != NULL) { + llama_sample_grammar(ctx, &cur_p, grammar); + } + + if (temp <= 0) { + // Greedy sampling + id = llama_sample_token_greedy(ctx, &cur_p); + } else { + if (mirostat == 1) { + static float mirostat_mu = 2.0f * mirostat_tau; + const int mirostat_m = 100; + llama_sample_temperature(ctx, &cur_p, temp); + id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); + } else if (mirostat == 2) { + static float mirostat_mu = 2.0f * mirostat_tau; + llama_sample_temperature(ctx, &cur_p, temp); + id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); + } else { + // Temperature sampling + llama_sample_top_k (ctx, &cur_p, top_k, 1); + llama_sample_tail_free (ctx, &cur_p, tfs_z, 1); + llama_sample_typical (ctx, &cur_p, typical_p, 1); + llama_sample_top_p (ctx, &cur_p, top_p, 1); + llama_sample_temperature(ctx, &cur_p, temp); + + { + const int n_top = 10; + LOG("top %d candidates:\n", n_top); + + for (int i = 0; i < n_top; i++) { + const llama_token id = cur_p.data[i].id; + LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); + } + } + + id = llama_sample_token(ctx, &cur_p); + + LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); + } + } + // printf("`%d`", candidates_p.size); + + if (grammar != NULL) { + llama_grammar_accept_token(ctx, grammar, id); + } + + return id; +} + +// +// YAML utils +// + // returns true if successful, false otherwise bool create_directory_with_parents(const std::string & path) { #ifdef _WIN32 @@ -1070,6 +1209,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); + fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false"); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: 0\n", params.n_gpu_layers); diff --git a/common/common.h b/common/common.h index 5a379688ee529..105fb09e4924d 100644 --- a/common/common.h +++ b/common/common.h @@ -32,6 +32,7 @@ struct gpt_params { int32_t n_ctx = 512; // context size int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_draft = 16; // number of tokens to draft during speculative decoding int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_gpu_layers = 0; // number of layers to store in VRAM int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors @@ -63,6 +64,7 @@ struct gpt_params { float cfg_scale = 1.f; // How strong is guidance std::string model = "models/7B/ggml-model-f16.gguf"; // model path + std::string model_draft = ""; // draft model for speculative decoding std::string model_alias = "unknown"; // model alias std::string prompt = ""; std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state @@ -156,6 +158,40 @@ std::string llama_detokenize_bpe( llama_context * ctx, const std::vector & tokens); +// +// Sampling utils +// + +// this is a common sampling function used across the examples for convenience +// it can serve as a starting point for implementing your own sampling function +// +// required: +// - ctx: context to use for sampling +// - params: sampling parameters +// +// optional: +// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL +// - grammar: grammar to use for sampling, ignore if NULL +// - last_tokens: needed for repetition penalty, ignore if empty +// - idx: sample from llama_get_logits(ctx) + idx * n_vocab +// +// returns: +// - token: sampled token +// - candidates: vector of candidate tokens +// +llama_token llama_sample_token( + struct llama_context * ctx, + struct llama_context * ctx_guidance, + struct llama_grammar * grammar, + const struct gpt_params & params, + const std::vector & last_tokens, + std::vector & candidates, + int idx = 0); + +// +// YAML utils +// + bool create_directory_with_parents(const std::string & path); void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector & data); void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector & data); diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 6e65eb0876c7e..884c4276422eb 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -23,6 +23,7 @@ else() add_subdirectory(train-text-from-scratch) add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(simple) + add_subdirectory(speculative) add_subdirectory(embd-input) add_subdirectory(llama-bench) add_subdirectory(beam-search) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index db98312ca1aba..922b9a9807bb7 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -116,7 +116,7 @@ int main(int argc, char ** argv) { #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("main", "log")); LOG_TEE("Log start\n"); - log_dump_cmdline(argc,argv); + log_dump_cmdline(argc, argv); #endif // LOG_DISABLE_LOGS // TODO: Dump params ? @@ -425,8 +425,9 @@ int main(int argc, char ** argv) { LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); LOG_TEE("\n\n"); + struct llama_grammar * grammar = NULL; grammar_parser::parse_state parsed_grammar; - llama_grammar * grammar = NULL; + if (!params.grammar.empty()) { parsed_grammar = grammar_parser::parse(params.grammar.c_str()); // will be empty (default) if there are parse errors @@ -450,8 +451,8 @@ int main(int argc, char ** argv) { } // TODO: replace with ring-buffer - std::vector last_n_tokens(n_ctx); - std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); + std::vector last_tokens(n_ctx); + std::fill(last_tokens.begin(), last_tokens.end(), 0); if (params.interactive) { const char *control_message; @@ -492,6 +493,11 @@ int main(int argc, char ** argv) { std::vector embd; std::vector embd_guidance; + const int n_vocab = llama_n_vocab(ctx); + + std::vector candidates; + candidates.reserve(n_vocab); + while ((n_remain != 0 && !is_antiprompt) || params.interactive) { // predict if (embd.size() > 0) { @@ -529,8 +535,8 @@ int main(int argc, char ** argv) { LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); - // insert n_left/2 tokens at the start of embd from last_n_tokens - embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size()); + // insert n_left/2 tokens at the start of embd from last_tokens + embd.insert(embd.begin(), last_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_tokens.end() - embd.size()); LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); @@ -629,20 +635,6 @@ int main(int argc, char ** argv) { embd_guidance.clear(); if ((int) embd_inp.size() <= n_consumed && !is_interacting) { - const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; - const float top_p = params.top_p; - const float tfs_z = params.tfs_z; - const float typical_p = params.typical_p; - const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; - const float repeat_penalty = params.repeat_penalty; - const float alpha_presence = params.presence_penalty; - const float alpha_frequency = params.frequency_penalty; - const int mirostat = params.mirostat; - const float mirostat_tau = params.mirostat_tau; - const float mirostat_eta = params.mirostat_eta; - const bool penalize_nl = params.penalize_nl; - // optionally save the session on first sample (for faster prompt loading next time) if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) { need_to_save_session = false; @@ -651,98 +643,12 @@ int main(int argc, char ** argv) { LOG("saved session to %s\n", path_session.c_str()); } - llama_token id = 0; - - { - auto logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); - - // Apply params.logit_bias map - for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { - logits[it->first] += it->second; - } - - std::vector candidates; - candidates.reserve(n_vocab); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { - candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); - } - - llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; - - if (ctx_guidance) { - llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); - } - - // Apply penalties - float nl_logit = logits[llama_token_nl(ctx)]; - auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); - llama_sample_repetition_penalty(ctx, &cur_p, - last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - last_n_repeat, repeat_penalty); - llama_sample_frequency_and_presence_penalties(ctx, &cur_p, - last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - last_n_repeat, alpha_frequency, alpha_presence); - if (!penalize_nl) { - for (size_t idx = 0; idx < cur_p.size; idx++) { - if (cur_p.data[idx].id == llama_token_nl(ctx)) { - cur_p.data[idx].logit = nl_logit; - break; - } - } - } - - if (grammar != NULL) { - llama_sample_grammar(ctx, &cur_p, grammar); - } - - if (temp <= 0) { - // Greedy sampling - id = llama_sample_token_greedy(ctx, &cur_p); - } else { - if (mirostat == 1) { - static float mirostat_mu = 2.0f * mirostat_tau; - const int mirostat_m = 100; - llama_sample_temperature(ctx, &cur_p, temp); - id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); - } else if (mirostat == 2) { - static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temperature(ctx, &cur_p, temp); - id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); - } else { - // Temperature sampling - llama_sample_top_k (ctx, &cur_p, top_k, 1); - llama_sample_tail_free (ctx, &cur_p, tfs_z, 1); - llama_sample_typical (ctx, &cur_p, typical_p, 1); - llama_sample_top_p (ctx, &cur_p, top_p, 1); - llama_sample_temperature(ctx, &cur_p, temp); - - { - const int n_top = 10; - LOG("top %d candidates:\n", n_top); - - for (int i = 0; i < n_top; i++) { - const llama_token id = cur_p.data[i].id; - LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); - } - } - - id = llama_sample_token(ctx, &cur_p); + const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates); - LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); - } - } - // printf("`%d`", candidates_p.size); + last_tokens.erase(last_tokens.begin()); + last_tokens.push_back(id); - if (grammar != NULL) { - llama_grammar_accept_token(ctx, grammar, id); - } - - last_n_tokens.erase(last_n_tokens.begin()); - last_n_tokens.push_back(id); - - LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_n_tokens)); - } + LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens)); embd.push_back(id); @@ -758,8 +664,8 @@ int main(int argc, char ** argv) { LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); while ((int) embd_inp.size() > n_consumed) { embd.push_back(embd_inp[n_consumed]); - last_n_tokens.erase(last_n_tokens.begin()); - last_n_tokens.push_back(embd_inp[n_consumed]); + last_tokens.erase(last_tokens.begin()); + last_tokens.push_back(embd_inp[n_consumed]); ++n_consumed; if ((int) embd.size() >= params.n_batch) { break; @@ -792,7 +698,7 @@ int main(int argc, char ** argv) { // check for reverse prompt if (params.antiprompt.size()) { std::string last_output; - for (auto id : last_n_tokens) { + for (auto id : last_tokens) { last_output += llama_token_to_piece(ctx, id); } @@ -823,7 +729,7 @@ int main(int argc, char ** argv) { } // deal with end of text token in interactive mode - if (last_n_tokens.back() == llama_token_eos(ctx)) { + if (last_tokens.back() == llama_token_eos(ctx)) { LOG("found EOS token\n"); if (params.interactive) { @@ -925,7 +831,7 @@ int main(int argc, char ** argv) { if (grammar != NULL) { llama_grammar_free(grammar); - std::vector grammar_rules( parsed_grammar.c_rules()); + std::vector grammar_rules(parsed_grammar.c_rules()); grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); diff --git a/examples/speculative/CMakeLists.txt b/examples/speculative/CMakeLists.txt new file mode 100644 index 0000000000000..6c5c9456e6234 --- /dev/null +++ b/examples/speculative/CMakeLists.txt @@ -0,0 +1,8 @@ +set(TARGET speculative) +add_executable(${TARGET} speculative.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp new file mode 100644 index 0000000000000..f0400c13fc211 --- /dev/null +++ b/examples/speculative/speculative.cpp @@ -0,0 +1,234 @@ +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + +#include "build-info.h" + +#include "common.h" +#include "llama.h" + +#include +#include +#include +#include + +int main(int argc, char ** argv) { + gpt_params params; + + if (gpt_params_parse(argc, argv, params) == false) { + return 1; + } + + if (params.model_draft.empty()) { + fprintf(stderr, "%s: error: --model-draft is required\n", __func__); + return 1; + } + +#ifndef LOG_DISABLE_LOGS + log_set_target(log_filename_generator("speculative", "log")); + LOG_TEE("Log start\n"); + log_dump_cmdline(argc, argv); +#endif // LOG_DISABLE_LOGS + + // init llama.cpp + llama_backend_init(params.numa); + + llama_model * model_tgt = NULL; + llama_model * model_dft = NULL; + + llama_context * ctx_tgt = NULL; + llama_context * ctx_dft = NULL; + + // load the target model + params.perplexity = true; // HACK: enable logits_all = true + std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); + + // load the draft model + params.model = params.model_draft; + std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params); + + // tokenize the prompt + std::vector inp; + inp = ::llama_tokenize(ctx_tgt, params.prompt, true); + + const int max_context_size = llama_n_ctx(ctx_tgt); + const int max_tokens_list_size = max_context_size - 4; + + if ((int) inp.size() > max_tokens_list_size) { + fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); + return 1; + } + + fprintf(stderr, "\n\n"); + + for (auto id : inp) { + fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str()); + } + + fflush(stderr); + + const int n_input = inp.size(); + + const auto t_enc_start = ggml_time_us(); + + // eval the prompt with both models + llama_eval(ctx_tgt, inp.data(), int(inp.size() - 1), 0, params.n_threads); + llama_eval(ctx_tgt, &inp.back(), 1, inp.size() - 1, params.n_threads); + llama_eval(ctx_dft, inp.data(), int(inp.size()), 0, params.n_threads); + + const auto t_enc_end = ggml_time_us(); + + // the 2 models should have the same vocab + const int n_ctx = llama_n_ctx(ctx_tgt); + const int n_vocab = llama_n_vocab(ctx_tgt); + //GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft)); + + // how many tokens to draft each time + const int n_draft = params.n_draft; + + int n_predict = 0; + int n_drafted = 0; + int n_accept = 0; + + int n_past_tgt = inp.size(); + int n_past_dft = inp.size(); + + std::vector drafted; + + std::vector last_tokens(n_ctx); + std::fill(last_tokens.begin(), last_tokens.end(), 0); + + for (auto & id : inp) { + last_tokens.erase(last_tokens.begin()); + last_tokens.push_back(id); + } + + std::vector candidates; + candidates.reserve(n_vocab); + + // used to determine end of generation + bool has_eos = false; + + const auto t_dec_start = ggml_time_us(); + + while (true) { + LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted)); + + // sample from the drafted tokens if any + int i_dft = 0; + while (true) { + const llama_token id = llama_sample_token(ctx_tgt, NULL, NULL, params, last_tokens, candidates, i_dft); + + last_tokens.erase(last_tokens.begin()); + last_tokens.push_back(id); + + //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens)); + + const std::string token_str = llama_token_to_piece(ctx_tgt, id); + printf("%s", token_str.c_str()); + fflush(stdout); + + if (id == llama_token_eos(ctx_tgt)) { + has_eos = true; + } + + ++n_predict; + + if (i_dft < (int) drafted.size() && id == drafted[i_dft]) { + LOG("drafted token %d accepted\n", id); + ++n_accept; + ++n_past_tgt; + ++n_past_dft; + ++i_dft; + + continue; + } + + // the drafted token was rejected or we are out of drafted tokens + llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads); + ++n_past_dft; + + drafted.clear(); + drafted.push_back(id); + + break; + } + + if (n_predict > params.n_predict || has_eos) { + break; + } + + // sample n_draft tokens from the draft model picking the best token + int n_past_cur = n_past_dft; + for (int i = 0; i < n_draft; ++i) { + float * logits = llama_get_logits(ctx_dft); + + candidates.clear(); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + + llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; + + // computes softmax and sorts the candidates + llama_sample_softmax(ctx_dft, &cur_p); + + for (int i = 0; i < 3; ++i) { + LOG(" - draft candidate %d: %d (%.3f)\n", i, cur_p.data[i].id, cur_p.data[i].p); + } + + // too low probability, stop drafting + if (cur_p.data[0].p < 2*cur_p.data[1].p) { + break; + } + + drafted.push_back(cur_p.data[0].id); + ++n_drafted; + + if (i < n_draft - 1) { + // evaluate the drafted token on the draft model + llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads); + ++n_past_cur; + } + } + + // evaluate the target model on the drafted tokens + llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads); + ++n_past_tgt; + + drafted.erase(drafted.begin()); + } + + auto t_dec_end = ggml_time_us(); + + LOG_TEE("\n\n"); + + LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); + LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); + + // TODO: make sure these numbers are computed correctly + LOG_TEE("\n"); + LOG_TEE("n_draft = %d\n", n_draft); + LOG_TEE("n_predict = %d\n", n_predict); + LOG_TEE("n_drafted = %d\n", n_drafted); + LOG_TEE("n_accept = %d\n", n_accept); + LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); + + LOG_TEE("\ndraft:\n"); + llama_print_timings(ctx_dft); + + LOG_TEE("\ntarget:\n"); + llama_print_timings(ctx_tgt); + + llama_free(ctx_tgt); + llama_free_model(model_tgt); + + llama_free(ctx_dft); + llama_free_model(model_dft); + + llama_backend_free(); + + fprintf(stderr, "\n\n"); + + return 0; +}