From c2ce6c47e4f2d891bf29d8810832a3b310a8f205 Mon Sep 17 00:00:00 2001 From: slaren Date: Tue, 11 Jun 2024 07:59:20 +0200 Subject: [PATCH 1/3] fix CUDA CI by using a windows-2019 image (#7861) * try to fix CUDA ci with --allow-unsupported-compiler * trigger when build.yml changes * another test * try exllama/bdashore3 method * install vs build tools before cuda toolkit * try win-2019 --- .github/workflows/build.yml | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 93669d5312214..3c04cfc295fb8 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -13,7 +13,7 @@ on: paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m'] pull_request: types: [opened, synchronize, reopened] - paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m'] + paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m'] concurrency: group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }} @@ -684,7 +684,7 @@ jobs: cmake --build build --config ${{ matrix.build }} -j $(nproc) windows-latest-cmake: - runs-on: windows-latest + runs-on: windows-2019 env: OPENBLAS_VERSION: 0.3.23 @@ -829,7 +829,7 @@ jobs: name: llama-bin-win-${{ matrix.build }}.zip windows-latest-cmake-cuda: - runs-on: windows-latest + runs-on: windows-2019 strategy: matrix: @@ -843,8 +843,9 @@ jobs: with: fetch-depth: 0 - - uses: Jimver/cuda-toolkit@v0.2.11 + - name: Install CUDA toolkit id: cuda-toolkit + uses: Jimver/cuda-toolkit@v0.2.15 with: cuda: ${{ matrix.cuda }} method: 'network' From bdcb8f42221bc40c411150a009a3d3a30fa74722 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Tue, 11 Jun 2024 08:26:07 +0200 Subject: [PATCH 2/3] CUDA: int8 tensor cores for MMQ (q4_K, q5_K, q6_K) (#7860) --- ggml-cuda/mma.cuh | 66 ++++++++++ ggml-cuda/mmq.cuh | 300 +++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 360 insertions(+), 6 deletions(-) diff --git a/ggml-cuda/mma.cuh b/ggml-cuda/mma.cuh index 71e8e342918aa..63e07fbc21291 100644 --- a/ggml-cuda/mma.cuh +++ b/ggml-cuda/mma.cuh @@ -1,5 +1,27 @@ #include "common.cuh" +struct mma_int_A_I16K4 { + static constexpr int I = 16; + static constexpr int K = 4; + static constexpr int ne = 2; + + int x[ne] = {0}; + + static __device__ __forceinline__ int get_i(const int l) { + const int ret = (l%2) * (I/2) + threadIdx.x / K; + GGML_CUDA_ASSUME(ret >= 0); + GGML_CUDA_ASSUME(ret < I); + return ret; + } + + static __device__ __forceinline__ int get_k(const int /* l */) { + const int ret = threadIdx.x % K; + GGML_CUDA_ASSUME(ret >= 0); + GGML_CUDA_ASSUME(ret < K); + return ret; + } +}; + struct mma_int_A_I16K8 { static constexpr int I = 16; static constexpr int K = 8; @@ -22,6 +44,28 @@ struct mma_int_A_I16K8 { } }; +struct mma_int_B_J8K4 { + static constexpr int J = 8; + static constexpr int K = 4; + static constexpr int ne = 1; + + int x[ne] = {0}; + + static __device__ __forceinline__ int get_j(const int /* l */) { + const int ret = threadIdx.x / K; + GGML_CUDA_ASSUME(ret >= 0); + GGML_CUDA_ASSUME(ret < J); + return ret; + } + + static __device__ __forceinline__ int get_k(const int /* l */) { + const int ret = threadIdx.x % K; + GGML_CUDA_ASSUME(ret >= 0); + GGML_CUDA_ASSUME(ret < K); + return ret; + } +}; + struct mma_int_B_J8K8 { static constexpr int J = 8; static constexpr int K = 8; @@ -65,6 +109,28 @@ struct mma_int_C_I16J8 { return ret; } + __device__ __forceinline__ void mma_K4(const mma_int_A_I16K4 & mma_A, const mma_int_B_J8K4 & mma_B) { +#ifdef INT8_MMA_AVAILABLE +#if __CUDA_ARCH__ >= CC_AMPERE + asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};" + : "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3]) + : "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_B.x[0])); +#else + // On Turing m16n8k16 mma is not available, use 2x m8n8k16 mma instead: + asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" + : "+r"(x[0]), "+r"(x[1]) + : "r"(mma_A.x[0]), "r"(mma_B.x[0])); + asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" + : "+r"(x[2]), "+r"(x[3]) + : "r"(mma_A.x[1]), "r"(mma_B.x[0])); +#endif // __CUDA_ARCH__ >= CC_AMPERE +#else + GGML_UNUSED(mma_A); + GGML_UNUSED(mma_B); + NO_DEVICE_CODE; +#endif // INT8_MMA_AVAILABLE + } + __device__ __forceinline__ void mma_K8(const mma_int_A_I16K8 & mma_A, const mma_int_B_J8K8 & mma_B) { #ifdef INT8_MMA_AVAILABLE #if __CUDA_ARCH__ >= CC_AMPERE diff --git a/ggml-cuda/mmq.cuh b/ggml-cuda/mmq.cuh index 62111f376ec81..01e2086b41646 100644 --- a/ggml-cuda/mmq.cuh +++ b/ggml-cuda/mmq.cuh @@ -1089,7 +1089,7 @@ template static __device__ __forceinlin } template -static __device__ __forceinline__ void vec_dot_q4_K_q8_1_mul_mat( +static __device__ __forceinline__ void vec_dot_q4_K_q8_1_dp4a( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { @@ -1115,6 +1115,97 @@ static __device__ __forceinline__ void vec_dot_q4_K_q8_1_mul_mat( } } +template +static __device__ __forceinline__ void vec_dot_q4_K_q8_1_mma( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y, float * __restrict__ sum, const int & k0) { + + GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); + + typedef mma_int_A_I16K8 mma_A; + typedef mma_int_B_J8K8 mma_B; + typedef mma_int_C_I16J8 mma_C; + + const int * y_qs = (const int *) y + 4; + const half2 * y_ds = (const half2 *) y; + + const int i0 = threadIdx.y*mma_A::I; + static_assert(nwarps*mma_A::I == mmq_y, "nwarps*mma_A::I != mmq_y"); + + mma_A A[2]; + int scA[mma_C::ne/2][2]; + int mA[mma_C::ne/2][2]; + half2 dmA[mma_C::ne/2]; +#pragma unroll + for (int kvdr = 0; kvdr < VDR_Q4_K_Q8_1_MMQ; kvdr += 4) { +#pragma unroll + for (int l = 0; l < mma_A::ne; ++l) { + const int i = i0 + mma_A::get_i(l); + const int k = k0 + mma_A::get_k(l); + + A[kvdr/4].x[l] = (x_ql[i*(WARP_SIZE + 1) + k] >> kvdr) & 0x0F0F0F0F; + } + +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int i = i0 + mma_C::get_i(2*l); + + const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]) + 2 * ((k0 % 16) / 8); + const uint8_t * m = sc + 8; + + scA[l][kvdr/4] = sc[kvdr/4]; + mA[l][kvdr/4] = m[kvdr/4]; + } + } + +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int i = i0 + mma_C::get_i(2*l); + + dmA[l] = x_dm[i*(WARP_SIZE/QI5_K) + i/QI5_K + k0/QI5_K]; + } + +#pragma unroll + for (int j0 = 0; j0 < mmq_x; j0 += mma_int_B_J8K8::J) { + float tmpd[mma_C::ne] = {0.0f}; + float tmpm[mma_C::ne] = {0.0f}; + +#pragma unroll + for (int kvdr = 0; kvdr < VDR_Q5_K_Q8_1_MMQ; kvdr += 4) { + mma_C C; + mma_B B; + half2 dsB[mma_C::ne/2]; + +#pragma unroll + for (int l = 0; l < mma_B::ne; ++l) { + const int j = j0 + mma_B::get_j(l); + const int k = (2*k0 + 2*kvdr + mma_B::get_k(l)) % WARP_SIZE; + + B.x[l] = y_qs[j*MMQ_TILE_Y_K + k]; + } +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int j = j0 + mma_C::get_j(l); + + dsB[l] = y_ds[j*MMQ_TILE_Y_K + ((2*k0 + 2*kvdr)/QI8_1) % (WARP_SIZE/QI8_1)]; + } + + C.mma_K8(A[kvdr/4], B); + +#pragma unroll + for (int l = 0; l < mma_C::ne; ++l) { + tmpd[l] += (C.x[l]*scA[l/2][kvdr/4]) * __low2float(dsB[l%2]); + tmpm[l] += mA[l/2][kvdr/4] * __high2float(dsB[l%2]); + } + } + +#pragma unroll + for (int l = 0; l < mma_C::ne; ++l) { + sum[(j0/mma_B::J)*mma_C::ne + l] += __low2float(dmA[l/2])*tmpd[l] - __high2float(dmA[l/2])*tmpm[l]; + } + } +} + template static __device__ __forceinline__ void load_tiles_q5_K( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { @@ -1188,7 +1279,7 @@ template static __device__ __forceinlin } template -static __device__ __forceinline__ void vec_dot_q5_K_q8_1_mul_mat( +static __device__ __forceinline__ void vec_dot_q5_K_q8_1_dp4a( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { @@ -1214,6 +1305,97 @@ static __device__ __forceinline__ void vec_dot_q5_K_q8_1_mul_mat( } } +template +static __device__ __forceinline__ void vec_dot_q5_K_q8_1_mma( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y, float * __restrict__ sum, const int & k0) { + + GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); + + typedef mma_int_A_I16K8 mma_A; + typedef mma_int_B_J8K8 mma_B; + typedef mma_int_C_I16J8 mma_C; + + const int * y_qs = (const int *) y + 4; + const half2 * y_ds = (const half2 *) y; + + const int i0 = threadIdx.y*mma_A::I; + static_assert(nwarps*mma_A::I == mmq_y, "nwarps*mma_A::I != mmq_y"); + + mma_A A[2]; + int scA[mma_C::ne/2][2]; + int mA[mma_C::ne/2][2]; + half2 dmA[mma_C::ne/2]; +#pragma unroll + for (int kvdr = 0; kvdr < VDR_Q5_K_Q8_1_MMQ; kvdr += 4) { +#pragma unroll + for (int l = 0; l < mma_A::ne; ++l) { + const int i = i0 + mma_A::get_i(l); + const int k = QR5_K*k0 + QR5_K*kvdr + mma_A::get_k(l); + + A[kvdr/4].x[l] = x_ql[i*(QR5_K*WARP_SIZE + 1) + k]; + } + +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int i = i0 + mma_C::get_i(2*l); + + const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]) + 2 * ((k0 % 16) / 8); + const uint8_t * m = sc + 8; + + scA[l][kvdr/4] = sc[kvdr/4]; + mA[l][kvdr/4] = m[kvdr/4]; + } + } + +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int i = i0 + mma_C::get_i(2*l); + + dmA[l] = x_dm[i*(WARP_SIZE/QI5_K) + i/QI5_K + k0/QI5_K]; + } + +#pragma unroll + for (int j0 = 0; j0 < mmq_x; j0 += mma_int_B_J8K8::J) { + float tmpd[mma_C::ne] = {0.0f}; + float tmpm[mma_C::ne] = {0.0f}; + +#pragma unroll + for (int kvdr = 0; kvdr < VDR_Q5_K_Q8_1_MMQ; kvdr += 4) { + mma_C C; + mma_B B; + half2 dsB[mma_C::ne/2]; + +#pragma unroll + for (int l = 0; l < mma_B::ne; ++l) { + const int j = j0 + mma_B::get_j(l); + const int k = (2*k0 + 2*kvdr + mma_B::get_k(l)) % WARP_SIZE; + + B.x[l] = y_qs[j*MMQ_TILE_Y_K + k]; + } +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int j = j0 + mma_C::get_j(l); + + dsB[l] = y_ds[j*MMQ_TILE_Y_K + ((2*k0 + 2*kvdr)/QI8_1) % (WARP_SIZE/QI8_1)]; + } + + C.mma_K8(A[kvdr/4], B); + +#pragma unroll + for (int l = 0; l < mma_C::ne; ++l) { + tmpd[l] += (C.x[l]*scA[l/2][kvdr/4]) * __low2float(dsB[l%2]); + tmpm[l] += mA[l/2][kvdr/4] * __high2float(dsB[l%2]); + } + } + +#pragma unroll + for (int l = 0; l < mma_C::ne; ++l) { + sum[(j0/mma_B::J)*mma_C::ne + l] += __low2float(dmA[l/2])*tmpd[l] - __high2float(dmA[l/2])*tmpm[l]; + } + } +} + template static __device__ __forceinline__ void load_tiles_q6_K( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { @@ -1280,7 +1462,7 @@ template static __device__ __forceinlin } template -static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mul_mat( +static __device__ __forceinline__ void vec_dot_q6_K_q8_1_dp4a( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { @@ -1307,6 +1489,97 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mul_mat( } } +template +static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y, float * __restrict__ sum, const int & k0) { + + GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); + + typedef mma_int_A_I16K4 mma_A; + typedef mma_int_B_J8K4 mma_B; + typedef mma_int_C_I16J8 mma_C; + + const float * x_df = (const float *) x_dm; + const int * y_qs = (const int *) y + 4; + const float * y_df = (const float *) y; + + const int i0 = threadIdx.y*mma_A::I; + static_assert(nwarps*mma_A::I == mmq_y, "nwarps*mma_A::I != mmq_y"); + + mma_A A[4]; + int scA[mma_C::ne/2][4]; + float dA[mma_C::ne/2]; +#pragma unroll + for (int kvdr = 0; kvdr < VDR_Q6_K_Q8_1_MMQ; kvdr += 4) { +#pragma unroll + for (int l = 0; l < mma_A::ne; ++l) { + const int i = i0 + mma_A::get_i(l); + const int k = QR6_K*k0 + QR6_K*kvdr + mma_A::get_k(l); + + A[kvdr/2 + 0].x[l] = x_ql[i*(QR6_K*WARP_SIZE + 1) + k + 0]; + A[kvdr/2 + 1].x[l] = x_ql[i*(QR6_K*WARP_SIZE + 1) + k + mma_A::K]; + } + +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int i = i0 + mma_C::get_i(2*l); + + const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/8]); + + scA[l][kvdr/2 + 0] = sc[kvdr/2 + 0]; + scA[l][kvdr/2 + 1] = sc[kvdr/2 + 1]; + } + } + +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int i = i0 + mma_C::get_i(2*l); + + dA[l] = x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K + k0/QI6_K]; + } + +#pragma unroll + for (int j0 = 0; j0 < mmq_x; j0 += mma_int_B_J8K8::J) { + float tmp[mma_C::ne] = {0.0f}; + +#pragma unroll + for (int kvdr = 0; kvdr < VDR_Q6_K_Q8_1_MMQ; kvdr += 4) { + mma_C C[2]; + mma_B B[2]; + float dB[mma_C::ne/2]; + +#pragma unroll + for (int l = 0; l < mma_B::ne; ++l) { + const int j = j0 + mma_B::get_j(l); + const int k = (2*k0 + 2*kvdr + mma_B::get_k(l)) % WARP_SIZE; + + B[0].x[l] = y_qs[j*MMQ_TILE_Y_K + k + 0]; + B[1].x[l] = y_qs[j*MMQ_TILE_Y_K + k + mma_B::K]; + } +#pragma unroll + for (int l = 0; l < mma_C::ne/2; ++l) { + const int j = j0 + mma_C::get_j(l); + + dB[l] = y_df[j*MMQ_TILE_Y_K + ((2*k0 + 2*kvdr)/QI8_1) % (WARP_SIZE/QI8_1)]; + } + + C[0].mma_K4(A[kvdr/2 + 0], B[0]); + C[1].mma_K4(A[kvdr/2 + 1], B[1]); + +#pragma unroll + for (int l = 0; l < mma_C::ne; ++l) { + tmp[l] += (C[0].x[l]*scA[l/2][kvdr/2 + 0] + C[1].x[l]*scA[l/2][kvdr/2 + 1])*dB[l%2]; + } + } + +#pragma unroll + for (int l = 0; l < mma_C::ne; ++l) { + sum[(j0/mma_B::J)*mma_C::ne + l] += tmp[l]*dA[l/2]; + } + } +} + template static __device__ __forceinline__ void mmq_write_back_dp4a(const float * __restrict__ sum, float * __restrict__ dst, const int & ne0, const int & ne1) { #pragma unroll @@ -1448,24 +1721,39 @@ template struct mmq_type_traits { static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K; - static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_K_q8_1_mul_mat; +#ifdef INT8_MMA_AVAILABLE + static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_K_q8_1_mma; + static constexpr mmq_write_back_t write_back = mmq_write_back_mma; +#else + static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_K_q8_1_dp4a; static constexpr mmq_write_back_t write_back = mmq_write_back_dp4a; +#endif // INT8_MMA_AVAILABLE }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K; - static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_K_q8_1_mul_mat; +#ifdef INT8_MMA_AVAILABLE + static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_K_q8_1_mma; + static constexpr mmq_write_back_t write_back = mmq_write_back_mma; +#else + static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_K_q8_1_dp4a; static constexpr mmq_write_back_t write_back = mmq_write_back_dp4a; +#endif // INT8_MMA_AVAILABLE }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K; - static constexpr vec_dot_mmq_t vec_dot = vec_dot_q6_K_q8_1_mul_mat; +#ifdef INT8_MMA_AVAILABLE + static constexpr vec_dot_mmq_t vec_dot = vec_dot_q6_K_q8_1_mma; + static constexpr mmq_write_back_t write_back = mmq_write_back_mma; +#else + static constexpr vec_dot_mmq_t vec_dot = vec_dot_q6_K_q8_1_dp4a; static constexpr mmq_write_back_t write_back = mmq_write_back_dp4a; +#endif // INT8_MMA_AVAILABLE }; static int mmq_need_sum(const ggml_type type_x) { From 4bfe50f741479c1df1c377260c3ff5702586719e Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 11 Jun 2024 10:10:20 +0300 Subject: [PATCH 3/3] tests : check the Python version (#7872) ggml-ci --- tests/test-json-schema-to-grammar.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/tests/test-json-schema-to-grammar.cpp b/tests/test-json-schema-to-grammar.cpp index a33104dea3598..87bc66b691784 100755 --- a/tests/test-json-schema-to-grammar.cpp +++ b/tests/test-json-schema-to-grammar.cpp @@ -870,7 +870,7 @@ int main() { } }); - if (getenv("LLAMA_PYTHON_AVAILABLE") || (std::system("python --version") == 0)) { + if (getenv("LLAMA_PYTHON_AVAILABLE") || (std::system("python -c \"import sys; exit(1) if sys.version_info < (3, 8) else print('Python version is sufficient')\"") == 0)) { test_all("Python", [](const TestCase & tc) { write("test-json-schema-input.tmp", tc.schema); tc.verify_status(std::system( @@ -878,7 +878,7 @@ int main() { tc.verify(read("test-grammar-output.tmp")); }); } else { - fprintf(stderr, "\033[33mWARNING: Python not found, skipping Python JSON schema -> grammar tests.\n\033[0m"); + fprintf(stderr, "\033[33mWARNING: Python not found (min version required is 3.8), skipping Python JSON schema -> grammar tests.\n\033[0m"); } if (getenv("LLAMA_NODE_AVAILABLE") || (std::system("node --version") == 0)) {