-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgame_ac_network.py
432 lines (329 loc) · 16 KB
/
game_ac_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import tf_common as tfc
import constants
import pickle
FLAGS = tf.app.flags.FLAGS
class Network(object):
def __init__(self, name="agent"):
self.name = name
with tf.device(constants.device):
with tf.variable_scope(name):
self.create_pnn()
def debug(self, sess):
fd = {self.s: np.ones((1, 84, 84, 4))}
a = sess.run(self.pi, feed_dict=fd)
b = sess.run(self.pi, feed_dict={self.s: np.zeros((1, 84, 84, 4))})
exit()
def create_pnn(self):
#self.s = tf.placeholder("float", [None, FLAGS.screen_height, FLAGS.screen_width, constants.history_frames], "state")
self.s = tf.placeholder("float", [None, 84, 84, constants.history_frames],
"state")
self.train_vars = []
self.var_dict = {}
self.all_vars = []
self.col_hiddens = []
for i in range(len(constants.tasks)):
print(">>>>>>>>>>>>>>>>>>>>>>")
p, v, col_vars, col_h = create_column(constants.tasks, i, self.s, self.col_hiddens)
vvv = []#col_vars[:-4]
if i == len(constants.tasks)-1:
vvv = col_vars
#print([var.name for var in vvv])
self.all_vars.extend(col_vars)
for var in vvv:
if var in tf.trainable_variables():
self.train_vars.append(var)
for col_var in col_vars:
n = col_var.name
n = n[n.index('/'):]
self.var_dict[n] = col_var
self.col_hiddens.append(col_h)
if i == len(constants.tasks)-1:
print("setting policy and value tensors.")
self.pi = p
self.v = v
print("<<<<<<<<<<<<<<<<<<<<<")
self.columns = len(self.col_hiddens)
self.layers = len(self.col_hiddens[0])
print([v.name for v in self.train_vars])
print("%i trainable weight variables." % len(self.train_vars))
def run_policy_and_value(self, sess, s_t):
pi_out, v_out = sess.run([self.pi, self.v], feed_dict={self.s: [s_t]})
return (pi_out[0], v_out[0])
def run_policy(self, sess, s_t):
pi_out = sess.run(self.pi, feed_dict={self.s: [s_t]})
return pi_out[0]
def run_value(self, sess, s_t):
v_out = sess.run(self.v, feed_dict={self.s: [s_t]})
return v_out[0]
def get_train_vars(self):
return self.train_vars
def evaluate_vars(self, sess):
for v in self.train_vars:
print(v.name)
print(sess.run(v))
print("="*20)
def prepare_loss(self, entropy_beta):
with tf.device(constants.device):
# taken action (input for policy)
self.a = tf.placeholder("float", [None, FLAGS.action_size])
# temporary difference (R-V) (input for policy)
self.td = tf.placeholder("float", [None])
# avoid NaN with clipping when value in pi becomes zero
log_pi = tf.log(tf.clip_by_value(self.pi, 1e-20, 1.0))
# policy entropy
entropy = -tf.reduce_sum(self.pi * log_pi, reduction_indices=1)
# policy loss (output) (Adding minus, because the original paper's objective function is for gradient ascent, but we use gradient descent optimizer.)
policy_loss = - tf.reduce_sum(
tf.reduce_sum(tf.mul(log_pi, self.a), reduction_indices=1) * self.td + entropy * entropy_beta)
# R (input for value)
self.r = tf.placeholder("float", [None])
# value loss (output)
# (Learning rate for Critic is half of Actor's, so multiply by 0.5)
value_loss = 0.5 * tf.nn.l2_loss(self.r - self.v)
# gradienet of policy and value are summed up
self.total_loss = policy_loss + value_loss
def sync_from(self, src_netowrk, name=None):
src_vars = src_netowrk.all_vars
dst_vars = self.all_vars
sync_ops = []
with tf.device(constants.device):
with tf.op_scope([], name, "GameACNetwork") as name:
for (src_var, dst_var) in zip(src_vars, dst_vars):
sync_op = tf.assign(dst_var, src_var)
sync_ops.append(sync_op)
return tf.group(*sync_ops, name=name)
def save(self, sess, path):
weights = {}
for name, var in self.var_dict.items():
weights[name] = sess.run(var)
pickle.dump(weights, open(path, "wb"))
def load(self, sess, path):
weights = pickle.load(open(path, "rb"))
print("CURRENT MODEL VARIABLES: " + str([v for v in self.var_dict.keys()]))
print("LOADING WEIGHTS FOR: " + str(weights.keys()))
for suffix, values in weights.items():
#if "p_" not in suffix and "v_" not in suffix:
#print(suffix)
var_name = self.name + suffix
sess.run(tf.assign(self.var_dict[suffix], values))
print("loaded values for: %s" % var_name)
#else:
# print("!!!skipping")
def get_grads(self): # to be implemented later
# print(self.col_hiddens[k][i])
grads = [[None for i in range(self.layers)] for k in range(self.columns)]
for k in range(self.columns):
for i in range(self.layers):
norm = self.col_hiddens[k][i]#/tf.reduce_sum(self.col_hiddens[k][i])
g = tf.gradients(tf.log(self.pi), norm)[0]
grads[k][i] = g
return grads
def sample_fisher(self, sess, state, grads):
dpdh = []
for k in range(self.columns):
print(k)
col_dpdh = []
for i in range(self.layers):
print(i)
dpdh_mat = np.power(sess.run(grads[k][i], feed_dict={self.s: [state]}), 2.0)
if len(dpdh_mat.shape) == 4:
dpdh_mat = np.sum(dpdh_mat, (0, 1, 2, 3))
else:
# print(grad)
dpdh_mat = np.sum(dpdh_mat, (0, 1))
# self.get_current_dpdh(sess, i, k, state)
# print(dpdh_mat.shape)
# print(self.col_hiddens[k][i])
# print(dpdh_mat)
col_dpdh.append(dpdh_mat)
dpdh.append(col_dpdh)
# fishers = []
# for k in range(self.columns):
# lyrs = []
# for i in range(self.layers):
# f = np.dot(dpdh[k][i], dpdh[k][i].T)
# lyrs.append(f)
# fishers.append(lyrs)
return dpdh # fishers
def create_column(col_names, self_i, state, col_hiddens):
print("creating column %i" % self_i)
arch = [
[8, constants.history_frames, 16, 4], # size, in, out, stride
[4, 16, 32, 2],
[256],
-1
]
train_vars = []
lats = [] #k, i
c_lats = []
if self_i > 0:
with tf.variable_scope("laterals"):
print("creating lateral connections to column %i" % self_i)
for col_i in range(self_i):
hiddens = col_hiddens[col_i]
print("##" + str(len(col_hiddens[col_i])))
col_lats = []
print("creating laterals %i -> %i" % (col_i, self_i))
with tf.variable_scope("%s_to_%s" % (col_names[col_i], col_names[self_i])):
for layer_i in range(len(hiddens)):
layer_lats = []
print("###" + str(layer_i))
dest_h_shape = arch[layer_i + 1]
with tf.variable_scope("layer%ito%i" % (layer_i, layer_i+1)):
orig_h = hiddens[layer_i]#tf.stop_gradient(hiddens[layer_i]) #origin
print("layer %i -> %i" % (layer_i, layer_i + 1))
if dest_h_shape == -1: # to policy and value layer
with tf.variable_scope("policy"):
lat_h_p, lat_vars_p = lateral_connection(orig_h, [FLAGS.action_size], self_i)
with tf.variable_scope("value"):
lat_h_v, lat_vars_v = lateral_connection(orig_h, [1], self_i)
layer_lats.append(lat_h_p)
layer_lats.append(lat_h_v)
train_vars.extend(lat_vars_p)
train_vars.extend(lat_vars_v)
else:
lat_h, lat_vars = lateral_connection(orig_h, dest_h_shape, self_i, arch[layer_i + 1])
layer_lats.append(lat_h)
train_vars.extend(lat_vars)
col_hiddens[col_i][layer_i] = orig_h
col_lats.append(layer_lats)
lats.append(col_lats)
#print("columns: %i" % (len(lats) + 1))
#print("hidden layers: %i" % (len(lats[0])))
#print("hidden shapes: %s" % col_hiddens[0])
#concatenate same-layer lateral connections
for i in range(len(lats[0])):
if arch[i+1] == -1:
to_policy_list = [lats[k][i][0] for k in range(len(lats))]
to_value_list = [lats[k][i][1] for k in range(len(lats))]
to_policy = tf.reduce_sum(to_policy_list, 0)
to_value = tf.reduce_sum(to_value_list, 0)
c_lats.append([to_policy, to_value])
print("summing ->policy and ->value layers")
print(to_policy_list)
print("=>")
print(to_policy)
print("&")
print(to_value_list)
print("=>")
print(to_value)
else:
h_list = [lats[k][i][0] for k in range(len(lats))]
if len(arch[i+1]) > 1:
c = tf.reduce_sum(h_list, 0)
c_lats.append(c)
print("summing convolutional layers")
print(h_list)
print("=>")
print(c)
else:
c = tf.reduce_sum(h_list, 0)
c_lats.append(c)
print("summing fully connected layers")
print(h_list)
print("=>")
print(c)
print("~~~")
print("done summing layers")
#print("c lats:")
#print(c_lats)
def add_lat(layer, i, act=tf.nn.relu):
if self_i <= 0:
if act is None:
return layer[0], layer[1], layer[2]
else:
return act(layer[0]), layer[1], layer[2]
elif len(i) == 1:
print("adding %s and %s" % (layer[0], c_lats[i[0]]))
return act(layer[0]+c_lats[i[0]]), layer[1], layer[2]
else:
if act is None:
print("(value) adding %s and %s" % (layer[0], c_lats[i[0]][i[1]]))
return layer[0] + c_lats[i[0]][i[1]], layer[1], layer[2]
else:
print("(policy) adding %s and %s" % (layer[0], c_lats[i[0]][i[1]]))
return act(layer[0]+c_lats[i[0]][i[1]]), layer[1], layer[2]
train = self_i == len(constants.tasks)-1
print("column trainable: %s" % train)
with tf.variable_scope(col_names[self_i]):
#resized = tf.image.resize_images(state, 84, 84)
c1, w1, b1 = tfc.conv2d("c1", state, arch[0][1], arch[0][2], size=arch[0][0], stride=arch[0][3], trainable=train)
c2, w2, b2 = add_lat(tfc.conv2d("c2", c1, arch[1][1], arch[1][2], size=arch[1][0], stride=arch[1][3], act=None, trainable=train), [0])
c2_size = np.prod(c2.get_shape().as_list()[1:])
c2_flat = tf.reshape(c2, [-1, c2_size])
if self_i <= 0:
h_fc1, w3, b3 = tfc.fc("fc1", c2_flat, c2_size, arch[2][0], trainable=train)
else:
h_fc1, w3, b3 = tfc.fc("fc1", c2_flat, c2_size, arch[2][0], act=None, trainable=train)
lat = c_lats[1]
print("adding %s and %s" % (h_fc1, lat))
lat_size = np.prod(lat.get_shape().as_list()[1:])
lat_flat = tf.reshape(lat, [-1, lat_size])
h_fc1 = tf.nn.relu(h_fc1 + lat_flat)
pi, wp, bp = add_lat(tfc.fc("p_fc", h_fc1, arch[2][0], FLAGS.action_size, act=None, trainable=train), [2, 0], tf.nn.softmax)
v_, wv, bv = add_lat(tfc.fc("v_fc", h_fc1, arch[2][0], 1, act=None, trainable=train), [2, 1], None)
v = tf.reshape(v_, [-1])
train_vars.extend([w1, b1, w2, b2, w3, b3, wp, bp, wv, bv])
col_vars = pi, v, train_vars, [c1, c2, h_fc1]
print("policy: %s" % pi)
print("last fc: %s" % h_fc1)
print("wp: %s" % wp.name)
print("created column %i." % self_i)
return col_vars
def lateral_connection(orig_hidden, dest_shape, self_i, current_op_shape=None):
print("adapter origin: %s" % orig_hidden.name)
train = self_i == len(constants.tasks)-1
#print(self_i)
#print(len(constants.tasks)-1)
print("lateral trainable: %s" % train)
nonlinear = True
omit_b = True
a = tf.get_variable(name="adapter", shape=[1], initializer=tf.constant_initializer(1), trainable=train)
ah = tf.mul(a, orig_hidden)
if nonlinear:
if len(orig_hidden.get_shape().as_list()) == 4:
maps_in = ah.get_shape().as_list()[3]
nic = int(maps_in / (2.0 * (self_i)))
lateral, w1, b1 = tfc.conv2d("V", ah, maps_in, nic, size=1, stride=1, trainable=train) # reduction (keep bias)
print("1) conv 1x1: %s" % w1.get_shape())
if len(dest_shape) > 1: # conv layer to conv layer
lateral, w2, _ = tfc.conv2d("U", lateral, nic, current_op_shape[2], size=current_op_shape[0],
stride=current_op_shape[3], act=None, omit_bias=omit_b, padding="SAME", trainable=train)
print("2) conv 1x1: %s" % w2.get_shape())
print("end result: %s" % lateral.name)
return lateral, [w1, b1, w2]
else: # conv layer to fc layer
c_size = np.prod(lateral.get_shape().as_list()[1:])
c_flat = tf.reshape(lateral, [-1, c_size])
lateral, w2, _ = tfc.fc("U", c_flat, c_size, dest_shape[0], act=None, omit_bias=omit_b, trainable=train)
print("2) flattened conv fc: %s" % w2.get_shape())
print("end result: %s" % lateral.name)
return lateral, [w1, b1, w2]
else: # fc layer to fc layer
n_in = ah.get_shape().as_list()[1]
ni = int(n_in / (2.0 * (self_i)))
lateral, w1, b1 = tfc.fc("V", ah, n_in, ni, trainable=train) # reduction (keep bias)
print("1) fc: %s" % w1.get_shape())
lateral, w2, _ = tfc.fc("U", lateral, ni, dest_shape[0], act=None, omit_bias=omit_b, trainable=train) # to be added to next hidden
print("2) fc: %s" % w2.get_shape())
print("end result: %s" % lateral.name)
return lateral, [w1, b1, w2]
else:
if len(orig_hidden.get_shape().as_list()) == 4:
maps_in = ah.get_shape().as_list()[3]
if len(dest_shape) > 1: # conv layer to conv layer
lateral, w2, _ = tfc.conv2d("U", ah, maps_in, current_op_shape[2], size=current_op_shape[0],
stride=current_op_shape[3], act=None, omit_bias=omit_b, padding="SAME", trainable=train)
return lateral, [w2]
else: # conv layer to fc layer
c_size = np.prod(ah.get_shape().as_list()[1:])
c_flat = tf.reshape(ah, [-1, c_size])
lateral, w2, _ = tfc.fc("U", c_flat, c_size, dest_shape[0], act=None, omit_bias=True, trainable=train)
return lateral, [w2]
else: # fc layer to fc layer
n_in = ah.get_shape().as_list()[1]
lateral, w2, _ = tfc.fc("U", ah, n_in, dest_shape[0], act=None, omit_bias=True, trainable=train) # to be added to next hidden
return lateral, [w2]