diff --git a/fri/stir.en.md b/fri/stir.en.md index 1591021..89b5ec2 100644 --- a/fri/stir.en.md +++ b/fri/stir.en.md @@ -262,8 +262,8 @@ We can see that, strictly speaking, this converts the test of $f$ to testing the Generally, let's assume that the function we want to perform degree correction on is $f: \mathcal{L} \rightarrow \mathbb{F}$, its initial degree is $d$, and the target corrected degree is $d^* \ge d$. We want to construct an efficient degree correction algorithm that can output a function $f^*$ satisfying: -1. If $f \in \mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$, then $f^* \in \mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$. -2. If $f$ is $\delta$-far from $\mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$, then with high probability, $f^*$ is also $\delta$-far from $\mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$. +1. If $f \in \mathrm{RS}[\mathbb{F},\mathcal{L},d]$, then $f^* \in \mathrm{RS}[\mathbb{F},\mathcal{L},d^*]$. +2. If $f$ is $\delta$-far from $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$, then with high probability, $f^*$ is also $\delta$-far from $\mathrm{RS}[\mathbb{F},\mathcal{L},d^*]$. 3. Queries to $f^*$ can be efficiently computed through queries to $f$. The STIR paper ([ACFY24], Section 2.3) proposes a method that not only satisfies the above three conditions but also uses the method of summing geometric series to make the calculation in item 3 more efficient. diff --git a/fri/stir.zh.md b/fri/stir.zh.md index 7e0eb5a..d3c7c2a 100644 --- a/fri/stir.zh.md +++ b/fri/stir.zh.md @@ -264,8 +264,8 @@ $$ 一般地,不妨假设我们要进行次数校正的函数是 $f: \mathcal{L} \rightarrow \mathbb{F}$ ,其初始的次数是 $d$ ,目标矫正的次数是 $d^* \ge d$ ,我们想要构造一个高效的次数校正算法,能输出一个函数 $f^*$ 满足: -1. 如果 $f \in \mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$ ,那么 $f^* \in \mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$ 。 -2. 如果 $f$ 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$ 有 $\delta$ 远,那么以极大的概率有 $f^*$ 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d/k]$ 也有 $\delta$ 远。 +1. 如果 $f \in \mathrm{RS}[\mathbb{F},\mathcal{L},d]$ ,那么 $f^* \in \mathrm{RS}[\mathbb{F},\mathcal{L},d^*]$ 。 +2. 如果 $f$ 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ 有 $\delta$ 远,那么以极大的概率有 $f^*$ 距离 $\mathrm{RS}[\mathbb{F},\mathcal{L},d^*]$ 也有 $\delta$ 远。 3. 对 $f^*$ 的查询可以通过查询 $f$ 来高效的计算出来。 STIR 论文 ([ACFY24], 第 2.3 节) 中提出了一种方法,不仅满足上述三个条件,还利用几何级数求和的方法,使得第 3 项的计算更加高效。