-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
225 lines (192 loc) · 8.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import streamlit as st
import cv2
import torch
from PIL import Image
import numpy as np
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import ViltProcessor, ViltForQuestionAnswering
import time
from io import BytesIO
import threading
import queue
import os
import tempfile
from datetime import datetime
# Set page config to wide mode
st.set_page_config(layout="wide", page_title="Securade.ai Sentinel")
def initialize_state():
if 'initialized' not in st.session_state:
st.session_state.frame = None
st.session_state.captions = []
st.session_state.stop_event = threading.Event()
st.session_state.frame_queue = queue.Queue(maxsize=1)
st.session_state.caption_queue = queue.Queue(maxsize=10)
st.session_state.processor = None
st.session_state.thread = None
st.session_state.is_streaming = False
st.session_state.initialized = True
@st.cache_resource
def load_processor():
class VideoProcessor:
def __init__(self):
self.caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
self.caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
self.vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
self.vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# Check for available devices
if torch.cuda.is_available():
self.device = "cuda"
elif torch.backends.mps.is_available():
self.device = "mps"
else:
self.device = "cpu"
self.caption_model.to(self.device)
self.vqa_model.to(self.device)
def generate_caption(self, image):
inputs = self.caption_processor(images=image, return_tensors="pt").to(self.device)
output = self.caption_model.generate(**inputs, max_new_tokens=50)
return self.caption_processor.decode(output[0], skip_special_tokens=True)
def answer_question(self, image, question):
inputs = self.vqa_processor(image, question, return_tensors="pt").to(self.device)
outputs = self.vqa_model(**inputs)
logits = outputs.logits
idx = logits.argmax(-1).item()
return self.vqa_model.config.id2label[idx]
return VideoProcessor()
def get_video_source(source_type, source_path=None):
if source_type == "Webcam":
return cv2.VideoCapture(0)
elif source_type == "Video File" and source_path:
# Create a temporary file
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, 'temp_video.mp4')
with open(temp_path, 'wb') as f:
f.write(source_path.getvalue())
return cv2.VideoCapture(temp_path)
elif source_type == "RTSP Stream" and source_path:
return cv2.VideoCapture(source_path)
return None
def process_video(stop_event, frame_queue, caption_queue, processor, source_type, source_path=None):
cap = get_video_source(source_type, source_path)
last_caption_time = time.time()
while not stop_event.is_set():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (800, 600))
current_time = time.time()
# Generate caption every 3 seconds
if current_time - last_caption_time >= 3.0:
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
caption = processor.generate_caption(img)
timestamp = datetime.now().strftime("%H:%M:%S")
try:
if caption_queue.full():
caption_queue.get_nowait()
caption_queue.put_nowait({'timestamp': timestamp, 'caption': caption})
last_caption_time = current_time
except queue.Full:
pass
try:
if frame_queue.full():
frame_queue.get_nowait()
frame_queue.put_nowait(frame)
except queue.Full:
pass
time.sleep(0.03)
cap.release()
def main():
initialize_state()
# Main title
st.title("Securade.ai Sentinel")
# Create three columns for layout
video_col, caption_col, qa_col = st.columns([0.4, 0.3, 0.3])
# Video column
with video_col:
st.subheader("Video Feed")
# Video source selection
source_type = st.selectbox(
"Select Video Source",
["Webcam", "Video File", "RTSP Stream"]
)
source_path = None
uploaded_file = None
if source_type == "Video File":
uploaded_file = st.file_uploader("Choose a video file", type=['mp4', 'avi', 'mov'])
if uploaded_file:
source_path = BytesIO(uploaded_file.getvalue())
elif source_type == "RTSP Stream":
source_path = st.text_input("Enter RTSP URL", placeholder="rtsp://your-camera-url")
start_stop = st.button(
"Start Surveillance" if not st.session_state.is_streaming else "Stop Surveillance"
)
video_placeholder = st.empty()
if start_stop:
if not st.session_state.is_streaming:
# Start surveillance
if st.session_state.processor is None:
st.session_state.processor = load_processor()
st.session_state.stop_event.clear()
st.session_state.frame_queue = queue.Queue(maxsize=1)
st.session_state.caption_queue = queue.Queue(maxsize=10)
st.session_state.thread = threading.Thread(
target=process_video,
args=(
st.session_state.stop_event,
st.session_state.frame_queue,
st.session_state.caption_queue,
st.session_state.processor,
source_type,
source_path
),
daemon=True
)
st.session_state.thread.start()
st.session_state.is_streaming = True
else:
# Stop surveillance
st.session_state.stop_event.set()
if st.session_state.thread:
st.session_state.thread.join(timeout=1.0)
st.session_state.frame = None
st.session_state.is_streaming = False
video_placeholder.empty()
# Caption column
with caption_col:
st.subheader("Scene Analysis")
caption_placeholder = st.empty()
# Q&A column
with qa_col:
st.subheader("Visual Q&A")
question = st.text_input("Ask a question about the scene:")
ask_button = st.button("Ask")
answer_placeholder = st.empty()
if ask_button and question and st.session_state.frame is not None:
img = Image.fromarray(cv2.cvtColor(st.session_state.frame, cv2.COLOR_BGR2RGB))
answer = st.session_state.processor.answer_question(img, question)
answer_placeholder.markdown(f"**Answer:** {answer}")
# Update loop
if st.session_state.is_streaming:
placeholder = st.empty()
while True:
try:
# Update video frame
frame = st.session_state.frame_queue.get_nowait()
st.session_state.frame = frame
video_placeholder.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Update captions
while not st.session_state.caption_queue.empty():
new_caption = st.session_state.caption_queue.get_nowait()
st.session_state.captions.append(new_caption)
st.session_state.captions = st.session_state.captions[-5:] # Keep last 5 captions
if st.session_state.captions:
caption_text = "\n\n".join([
f"**[{cap['timestamp']}]** {cap['caption']}"
for cap in reversed(st.session_state.captions)
])
caption_placeholder.markdown(caption_text)
except queue.Empty:
time.sleep(0.01)
continue
if __name__ == "__main__":
main()