This repository has been archived by the owner on Jan 2, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsynthesizer.py
275 lines (217 loc) · 10 KB
/
synthesizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# coding: utf-8
"""
python synthesizer.py --load_path logdir-tacotron2/moon+son_2019-02-27_00-21-42 --num_speakers 2 --speaker_id 0 --text "그런데 청년은 이렇게 말합니다"
python synthesizer.py --load_path logdir-tacotron2/moon+son_2019-02-27_00-21-42 --num_speakers 2 --speaker_id 0 --text "이런 논란은 타코트론 논문 이후에 사라졌습니다"
python synthesizer.py --load_path logdir-tacotron2/moon+son_2019-02-27_00-21-42 --num_speakers 2 --speaker_id 1 --text "이런 논란은 타코트론 논문 이후에 사라졌습니다"
python synthesizer.py --load_path logdir-tacotron2/moon+son_2019-02-27_00-21-42 --num_speakers 2 --speaker_id 0 --text "오는 6월6일은 제64회 현충일입니다"
python synthesizer.py --load_path logdir-tacotron2/moon+son_2019-02-27_00-21-42 --num_speakers 2 --speaker_id 1 --text "오는 6월6일은 제64회 현충일입니다"
python synthesizer.py --load_path logdir-tacotron2/moon+son_2019-02-27_00-21-42 --num_speakers 2 --speaker_id 0 --text "오스트랄로피테쿠스 아파렌시스는 멸종된 사람족 종으로, 현재에는 뼈 화석이 발견되어 있다"
python synthesizer.py --load_path logdir-tacotron2/moon+son_2019-02-27_00-21-42 --num_speakers 2 --speaker_id 1 --text "오스트랄로피테쿠스 아파렌시스는 멸종된 사람족 종으로, 현재에는 뼈 화석이 발견되어 있다"
"""
import io
import os
import re
import librosa
import argparse
import numpy as np
from glob import glob
from tqdm import tqdm
import tensorflow as tf
from functools import partial
from audio_merge import concat_audio
from hparams import hparams
from tacotron2 import create_model, get_most_recent_checkpoint
from utils.audio import save_wav, inv_linear_spectrogram, inv_preemphasis, inv_spectrogram_tensorflow
from utils import plot, PARAMS_NAME, load_json, load_hparams, add_prefix, add_postfix, get_time, parallel_run, makedirs, \
str2bool
from text.korean import tokenize
from text import text_to_sequence, sequence_to_text
from datasets.datafeeder_tacotron2 import _prepare_inputs
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
tf.logging.set_verbosity(tf.logging.ERROR)
class Synthesizer(object):
def close(self):
tf.reset_default_graph()
self.sess.close()
def load(self, checkpoint_path, num_speakers=2, checkpoint_step=None, inference_prenet_dropout=True,
model_name='tacotron', config = None):
self.num_speakers = num_speakers
if os.path.isdir(checkpoint_path):
load_path = checkpoint_path
checkpoint_path = get_most_recent_checkpoint(checkpoint_path, checkpoint_step)
else:
load_path = os.path.dirname(checkpoint_path)
print('Constructing model: %s' % model_name)
inputs = tf.placeholder(tf.int32, [None, None], 'inputs')
input_lengths = tf.placeholder(tf.int32, [None], 'input_lengths')
batch_size = tf.shape(inputs)[0]
speaker_id = tf.placeholder_with_default(
tf.zeros([batch_size], dtype=tf.int32), [None], 'speaker_id')
load_hparams(hparams, load_path)
hparams.inference_prenet_dropout = inference_prenet_dropout
with tf.variable_scope('model') as scope:
self.model = create_model(hparams)
self.model.initialize(inputs=inputs, input_lengths=input_lengths, num_speakers=self.num_speakers,
speaker_id=speaker_id, is_training=False)
self.wav_output = inv_spectrogram_tensorflow(self.model.linear_outputs, hparams)
print('Loading checkpoint: %s' % checkpoint_path)
sess_config = tf.ConfigProto(
allow_soft_placement=True,
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=2)
self.sess = tf.Session(config=sess_config)
self.sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(self.sess, checkpoint_path)
def synthesize(self,
texts=None, tokens=None,
base_path=None, paths=None, speaker_ids=None,
start_of_sentence=None, end_of_sentence=True,
pre_word_num=0, post_word_num=0,
pre_surplus_idx=0, post_surplus_idx=1,
base_alignment_path=None,
librosa_trim=False,
attention_trim=True,
isKorean=True, config = None):
# Possible inputs:
# 1) text=text
# 2) text=texts
# 3) tokens=tokens, texts=texts # use texts as guide
if type(texts) == str:
texts = [texts]
if texts is not None and tokens is None:
sequences = np.array([text_to_sequence(text) for text in texts])
sequences = _prepare_inputs(sequences)
elif tokens is not None:
sequences = tokens
# sequences = np.pad(sequences,[(0,0),(0,5)],'constant',constant_values=(0)) # case by case ---> overfitting?
if paths is None:
paths = [None] * len(sequences)
if texts is None:
texts = [None] * len(sequences)
time_str = get_time()
def plot_and_save_parallel(wavs, alignments, mels, config=None):
items = list(enumerate(zip(wavs, alignments, paths, texts, sequences, mels)))
fn = partial(
plot_graph_and_save_audio,
base_path=base_path,
start_of_sentence=start_of_sentence, end_of_sentence=end_of_sentence,
pre_word_num=pre_word_num, post_word_num=post_word_num,
pre_surplus_idx=pre_surplus_idx, post_surplus_idx=post_surplus_idx,
librosa_trim=librosa_trim,
attention_trim=attention_trim,
time_str=time_str,
isKorean=isKorean, config=config)
return parallel_run(fn, items, desc="plot_graph_and_save_audio", parallel=False)
# input_lengths = np.argmax(np.array(sequences) == 1, 1)+1
input_lengths = [np.argmax(a == 1) + 1 for a in sequences]
fetches = [
# self.wav_output,
self.model.linear_outputs,
self.model.alignments, # # batch_size, text length(encoder), target length(decoder)
self.model.mel_outputs,
]
feed_dict = {self.model.inputs: sequences, self.model.input_lengths: input_lengths, }
if speaker_ids is not None:
if type(speaker_ids) == dict:
speaker_embed_table = self.sess.run(
self.model.speaker_embed_table)
speaker_embed = [speaker_ids[speaker_id] * speaker_embed_table[speaker_id] for speaker_id in
speaker_ids]
feed_dict.update({self.model.speaker_embed_table: np.tile()})
else:
feed_dict[self.model.speaker_id] = speaker_ids
wavs, alignments, mels = self.sess.run(fetches, feed_dict=feed_dict)
results = plot_and_save_parallel(wavs, alignments, mels=mels, config=config)
return results
def plot_graph_and_save_audio(args,
base_path=None,
start_of_sentence=None, end_of_sentence=None,
pre_word_num=0, post_word_num=0,
pre_surplus_idx=0, post_surplus_idx=1,
save_alignment=False,
librosa_trim=False, attention_trim=False,
time_str=None, isKorean=True, config=None):
idx, (wav, alignment, path, text, sequence, mel) = args
if base_path:
plot_path = "{}/{}_{}.png".format(base_path, config.file.split('.')[0], idx)
elif path:
plot_path = path.rsplit('.', 1)[0] + ".png"
else:
plot_path = None
if plot_path:
plot.plot_alignment(alignment, plot_path, text=text, isKorean=isKorean)
if attention_trim and end_of_sentence:
# attention이 text의 마지막까지 왔다면, 그 뒷부분은 버린다.
end_idx_counter = 0
attention_argmax = alignment.argmax(
0) # alignment: text length(encoder), target length(decoder) ==> target length(decoder)
end_idx = min(len(sequence) - 1, max(attention_argmax))
max_counter = min((attention_argmax == end_idx).sum(), 5)
for jdx, attend_idx in enumerate(attention_argmax):
if len(attention_argmax) > jdx + 1:
if attend_idx == end_idx:
end_idx_counter += 1
if attend_idx == end_idx and attention_argmax[jdx + 1] > end_idx:
break
if end_idx_counter >= max_counter:
break
else:
break
spec_end_idx = hparams.reduction_factor * jdx + 3
wav = wav[:spec_end_idx]
mel = mel[:spec_end_idx]
audio_out = inv_linear_spectrogram(wav.T, hparams)
if librosa_trim and end_of_sentence:
yt, index = librosa.effects.trim(audio_out, frame_length=5120, hop_length=256, top_db=50)
audio_out = audio_out[:index[-1]]
mel = mel[:index[-1] // hparams.hop_size]
if save_alignment:
alignment_path = "{}/{}.npy".format(base_path, idx)
np.save(alignment_path, alignment, allow_pickle=False)
if path or base_path:
if path:
current_path = add_postfix(path, idx)
elif base_path:
current_path = plot_path.replace(".png", ".wav")
save_wav(audio_out, current_path, hparams.sample_rate)
# hccho
mel_path = current_path.replace(".wav", ".npy")
np.save(mel_path, mel)
return current_path
else:
io_out = io.BytesIO()
save_wav(audio_out, io_out, hparams.sample_rate)
result = io_out.getvalue()
return io_out
def get_most_recent_checkpoint(checkpoint_dir, checkpoint_step=None):
if checkpoint_step is None:
checkpoint_paths = [path for path in glob("{}/*.ckpt-*.data-*".format(checkpoint_dir))]
idxes = [int(os.path.basename(path).split('-')[1].split('.')[0]) for path in checkpoint_paths]
max_idx = max(idxes)
else:
max_idx = checkpoint_step
lastest_checkpoint = os.path.join(checkpoint_dir, "model.ckpt-{}".format(max_idx))
print(" [*] Found lastest checkpoint: {}".format(lastest_checkpoint))
return lastest_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--load_path', required=True)
parser.add_argument('--sample_path', default="logdir-tacotron2/generate")
parser.add_argument('--num_speakers', default=1, type=int)
parser.add_argument('--speaker_id', default=0, type=int)
parser.add_argument('--checkpoint_step', default=None, type=int)
parser.add_argument('--is_korean', default=True, type=str2bool)
parser.add_argument('--base_alignment_path', default=None)
parser.add_argument('--file', required=True)
config = parser.parse_args()
makedirs(config.sample_path)
lines = []
with open(config.file, 'r') as f:
lines = f.readlines()
synthesizer = Synthesizer()
synthesizer.load(config.load_path, config.num_speakers, config.checkpoint_step, inference_prenet_dropout=False)
audio = synthesizer.synthesize(texts=lines, base_path=config.sample_path, speaker_ids=[config.speaker_id],
attention_trim=True, base_alignment_path=config.base_alignment_path,
isKorean=config.is_korean)[0]