-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_pgn.py
156 lines (124 loc) · 5.99 KB
/
main_pgn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
from torch import optim
import os
import numpy as np
from sklearn import metrics
import time
import utils
import dataset
def calculate_scores(mu, logvar):
scores = -0.5*(1+logvar-mu.pow(2) - logvar.exp())
scores = scores.sum(dim=1)
return scores
def loss_function(mu, logvar):
kl_div_loss = torch.sum(calculate_scores(mu, logvar))
return kl_div_loss
def train(epoch, model, trainloader, optimizer, scheduler, logger, device):
train_loss = 0.
model.train() # train mode
scheduler.step() # update optimizer lr
for batch_idx, (inputs, _) in enumerate(trainloader):
img_data = inputs.detach().cpu().numpy()[0].squeeze()
inputs = inputs.to(device)
optimizer.zero_grad()
mu, logvar = model(inputs)
loss = loss_function(mu,logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
print(' Training... Epoch: %4d | Iter: %4d/%4d | Mean Loss: %.4f '%(epoch, batch_idx+1, len(trainloader), train_loss/(batch_idx+1)), end = '\r')
print('')
logger.write(' Training... Epoch: %4d | Iter: %4d/%4d | Mean Loss: %.4f \n'%(epoch, batch_idx+1, len(trainloader), train_loss/(batch_idx+1)))
def pretrain(trainloader, datatype, device):
import models
ae_net = models.get_ae(datatype).to(device)
optimizer = optim.Adam(ae_net.parameters(), lr=0.0001, weight_decay=1e-4)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[75], gamma=0.1)
print('==> Start pretraining ..')
ae_net.train()
for epoch in range(100):
scheduler.step() # update optimizer lr
train_loss = 0.
for batch_idx, (inputs, _) in enumerate(trainloader):
inputs = inputs.to(device)
optimizer.zero_grad()
outputs = ae_net(inputs)
scores = torch.sum((outputs - inputs) ** 2, dim=tuple(range(1, outputs.dim())))
recon_loss = torch.mean(scores) # reconstruction loss
train_loss += recon_loss.item()
recon_loss.backward()
optimizer.step()
print(' Pretraining... Epoch: %4d | Iter: %4d/%4d | Mean Loss: %.4f '%(epoch, batch_idx+1, len(trainloader), train_loss/(batch_idx+1)), end = '\r')
print("")
return ae_net
def test(model, testloader, T, device):
test_loss = 0.
scores_list = []
scores_wo_variation_list = []
targets_list = []
model.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs = inputs.to(device)
kl_dropout = []
mu_dropout = []
logvar_dropout = []
for t in range(T):
mu, logvar = model(inputs)
kl_value = calculate_scores(mu, logvar)
kl_dropout.append(kl_value.unsqueeze(dim=1))
mu_dropout.append(mu.unsqueeze(dim=2))
logvar_dropout.append(logvar.unsqueeze(dim=2))
mu_dropout = torch.cat(mu_dropout, dim=2)
logvar_dropout = torch.cat(logvar_dropout, dim=2)
mu_mean = torch.mean(mu_dropout,dim=2)
logvar_mean = torch.mean(logvar_dropout,dim=2)
kl_value = calculate_scores(mu_mean,logvar_mean) # anomaly scores without taking into account variation
scores_wo_variation_list.append(kl_value.cpu().numpy())
scores = torch.cat(kl_dropout,dim=1).mean(dim=1) # anomaly scores considering variation
scores_list.append(scores.cpu().numpy())
targets_list.append(targets.cpu().numpy())
print(' Test... Iter: %4d/%4d '%(batch_idx+1, len(testloader), ), end = '\r')
print('')
test_loss = test_loss/(batch_idx+1)
targets = np.concatenate(targets_list)
scores_total = np.concatenate(scores_list)
auroc = metrics.roc_auc_score(targets, scores_total)
scores_wo_variation_list_total = np.concatenate(scores_wo_variation_list)
auroc_wo_variation = metrics.roc_auc_score(targets, scores_wo_variation_list_total)
print('AUROC (proposed): %.4f, AUROC (without variation): %.4f'%(auroc,auroc_wo_variation))
# calculate AUPR
precision, recall, _ = metrics.precision_recall_curve(targets, scores_total)
aupr = metrics.auc(recall, precision)
return auroc, aupr, test_loss
def main(args):
logger, result_dir, dir_name = utils.config_backup_get_log(args,__file__)
device = utils.get_device()
utils.set_seed(args.seed, device)
trainloader = dataset.get_trainloader(args.data, args.dataroot, args.target, args.bstrain, args.nworkers)
testloader = dataset.get_testloader(args.data, args.dataroot, args.target, args.bstest, args.nworkers)
import models
model = models.get_pgn_encoder(args.data, args.dropoutp).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.5, 0.999), weight_decay=1e-4)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=0.1)
chpt_name = 'GPN_%s_target%s_seed%s.pth'%(args.data, str(args.target), str(args.seed))
chpt_name = os.path.join("./chpt",chpt_name)
print('==> Start training ..')
start = time.time()
for epoch in range(args.maxepoch):
train(epoch, model, trainloader, optimizer, scheduler, logger, device)
auroc, aupr, _ = test(model, testloader, args.mcdropoutT, device)
print('Epoch: %4d AUROC: %.6f AUPR: %.6f'%(epoch, auroc, aupr))
logger.write('Epoch: %4d AUROC: %.6f AUPR: %.6f \n'%(epoch, auroc, aupr))
state = {'model': model.state_dict(), 'auroc': auroc, 'epoch': epoch}
torch.save(state, chpt_name)
end = time.time()
hours, rem = divmod(end-start, 3600)
minutes, seconds = divmod(rem, 60)
print('AUROC... ', auroc)
print("Elapsed Time: {:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds))
logger.write("AUROC: %.8f\n"%(auroc))
logger.write("Elapsed Time: {:0>2}:{:0>2}:{:05.2f}\n".format(int(hours),int(minutes),seconds))
if __name__ == '__main__':
args = utils.process_args()
main(args)