-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathClass.hs
918 lines (777 loc) · 26.4 KB
/
Class.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstrainedClassMethods #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -fno-warn-unticked-promoted-constructors #-}
{-# OPTIONS_GHC -Wno-unused-type-patterns #-}
-- | Reimagined approach for 'Foldable' type hierarchy. Forbids usages
-- of 'length' function and similar over 'Maybe' and other potentially unsafe
-- data types. It was proposed to use @-XTypeApplication@ for such cases.
-- But this approach is not robust enough because programmers are human and can
-- easily forget to do this. For discussion see this topic:
-- <https://www.reddit.com/r/haskell/comments/60r9hu/proposal_suggest_explicit_type_application_for/ Suggest explicit type application for Foldable length and friends>
module Universum.Container.Class
( -- * Foldable-like classes and methods
ToPairs (..)
, FromList (..)
, Container (..)
, checkingNotNull
, flipfoldl'
, sum
, product
, mapM_
, forM_
, traverse_
, for_
, sequenceA_
, sequence_
, asum
, concatMap
-- * Others
, One(..)
) where
import Data.Coerce (Coercible, coerce)
import Data.Kind (Type)
import Prelude hiding (all, and, any, concatMap, elem, foldMap, foldl, foldr, mapM_, notElem, null,
#if __GLASGOW_HASKELL__ >= 910
foldl',
#endif
or, print, product, sequence_, sum)
import Universum.Applicative (Alternative (..), Const, ZipList (..), pass)
import Universum.Base (HasCallStack, Word8)
import Universum.Container.Reexport (HashMap, HashSet, Hashable, IntMap, IntSet, Map, Seq, Set,
Vector)
import Universum.Functor (Identity)
import Universum.Monoid (All (..), Any (..), Dual, First (..), Last, Product, Sum)
import qualified GHC.Exts as Exts
import GHC.TypeLits (ErrorMessage (..), Symbol, TypeError)
import qualified Data.List.NonEmpty as NE
import Universum.List.Reexport (NonEmpty)
import qualified Data.Foldable as Foldable
import qualified Data.Sequence as SEQ
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BSL
import qualified Data.List (concatMap)
import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.HashMap.Strict as HM
import qualified Data.HashSet as HashSet
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import qualified Data.Map as M
import qualified Data.Set as Set
import qualified Data.Vector as V
import qualified Data.Vector.Primitive as VP
import qualified Data.Vector.Storable as VS
import qualified Data.Vector.Unboxed as VU
-- $setup
-- >>> import Universum.Base (even)
-- >>> import Universum.Bool (when)
-- >>> import Universum.Print (print, putTextLn)
-- >>> import Universum.String (Text)
-- >>> import qualified Data.HashMap.Strict as HashMap
----------------------------------------------------------------------------
-- ToPairs
----------------------------------------------------------------------------
{- | Type class for data types that can be converted to List of Pairs.
You can define 'ToPairs' by just defining 'toPairs' function.
But the following laws should be met:
@
'toPairs' m ≡ 'zip' ('keys' m) ('elems' m)
'keys' ≡ 'map' 'fst' . 'toPairs'
'elems' ≡ 'map' 'snd' . 'toPairs'
@
-}
class ToPairs t where
{-# MINIMAL toPairs #-}
-- | Type of keys of the mapping.
type Key t :: Type
-- | Type of value of the mapping.
type Val t :: Type
-- | Converts the structure to the list of the key-value pairs.
-- >>> toPairs (HashMap.fromList [('a', "xxx"), ('b', "yyy")])
-- [('a',"xxx"),('b',"yyy")]
toPairs :: t -> [(Key t, Val t)]
-- | Converts the structure to the list of the keys.
--
-- >>> keys (HashMap.fromList [('a', "xxx"), ('b', "yyy")])
-- "ab"
keys :: t -> [Key t]
keys = map fst . toPairs
{-# INLINE keys #-}
-- | Converts the structure to the list of the values.
--
-- >>> elems (HashMap.fromList [('a', "xxx"), ('b', "yyy")])
-- ["xxx","yyy"]
elems :: t -> [Val t]
elems = map snd . toPairs
{-# INLINE elems #-}
-- Instances
instance ToPairs (HashMap k v) where
type Key (HashMap k v) = k
type Val (HashMap k v) = v
toPairs = HM.toList
{-# INLINE toPairs #-}
keys = HM.keys
{-# INLINE keys #-}
elems = HM.elems
{-# INLINE elems #-}
instance ToPairs (IntMap v) where
type Key (IntMap v) = Int
type Val (IntMap v) = v
toPairs = IM.toList
{-# INLINE toPairs #-}
keys = IM.keys
{-# INLINE keys #-}
elems = IM.elems
{-# INLINE elems #-}
instance ToPairs (Map k v) where
type Key (Map k v) = k
type Val (Map k v) = v
toPairs = M.toList
{-# INLINE toPairs #-}
keys = M.keys
{-# INLINE keys #-}
elems = M.elems
{-# INLINE elems #-}
instance ToPairs [(k, v)] where
type Key [(k, v)] = k
type Val [(k, v)] = v
toPairs = id
{-# INLINE toPairs #-}
instance ToPairs (NonEmpty (k, v)) where
type Key (NonEmpty (k, v)) = k
type Val (NonEmpty (k, v)) = v
toPairs = NE.toList
{-# INLINE toPairs #-}
----------------------------------------------------------------------------
-- FromList
----------------------------------------------------------------------------
-- | Type class for data types that can be constructed from a list.
class FromList l where
type ListElement l :: Type
type ListElement l = Exts.Item l
type FromListC l :: Exts.Constraint
type FromListC l = ()
{- | Make a value from list.
For simple types like '[]' and 'Set':
@
'toList' . 'fromList' ≡ id
'fromList' . 'toList' ≡ id
@
For map-like types:
@
'toPairs' . 'fromList' ≡ id
'fromList' . 'toPairs' ≡ id
@
-}
fromList :: FromListC l => [ListElement l] -> l
default fromList
:: (Exts.IsList l, Exts.Item l ~ a, ListElement l ~ a)
=> [ListElement l] -> l
fromList = Exts.fromList
instance FromList [a]
instance FromList (Vector a)
instance FromList (Seq a)
instance FromList (ZipList a) where
type ListElement (ZipList a) = a
fromList = ZipList
instance FromList (NonEmpty a) where
type FromListC (NonEmpty a) = HasCallStack
fromList l = case l of
[] -> error "empty list"
x : xs -> x NE.:| xs
instance FromList IntSet
instance Ord a => FromList (Set a)
instance FromList (IntMap v)
instance Ord k => FromList (Map k v)
#if MIN_VERSION_hashable(1,4,0)
instance (Hashable k) => FromList (HashMap k v)
#else
instance (Eq k, Hashable k) => FromList (HashMap k v)
#endif
instance FromList T.Text
instance FromList TL.Text
instance FromList BS.ByteString where
type ListElement BS.ByteString = Word8
fromList = BS.pack
instance FromList BSL.ByteString where
type ListElement BSL.ByteString = Word8
fromList = BSL.pack
----------------------------------------------------------------------------
-- Containers (e.g. tuples and Maybe aren't containers)
----------------------------------------------------------------------------
-- | Default implementation of 'Element' associated type family.
type family ElementDefault (t :: Type) :: Type where
ElementDefault (_ a) = a
-- | Very similar to 'Foldable' but also allows instances for monomorphic types
-- like 'Text' but forbids instances for 'Maybe' and similar. This class is used as
-- a replacement for 'Foldable' type class. It solves the following problems:
--
-- 1. 'length', 'foldr' and other functions work on more types for which it makes sense.
-- 2. You can't accidentally use 'length' on polymorphic 'Foldable' (like list),
-- replace list with 'Maybe' and then debug error for two days.
-- 3. More efficient implementaions of functions for polymorphic types (like 'elem' for 'Set').
--
-- The drawbacks:
--
-- 1. Type signatures of polymorphic functions look more scary.
-- 2. Orphan instances are involved if you want to use 'foldr' (and similar) on types from libraries.
class Container t where
-- | Type of element for some container. Implemented as an asscociated type family because
-- some containers are monomorphic over element type (like 'T.Text', 'IntSet', etc.)
-- so we can't implement nice interface using old higher-kinded types
-- approach. Implementing this as an associated type family instead of
-- top-level family gives you more control over element types.
type Element t :: Type
type Element t = ElementDefault t
-- | Convert container to list of elements.
--
-- >>> toList @Text "aba"
-- "aba"
-- >>> :t toList @Text "aba"
-- toList @Text "aba" :: [Char]
toList :: t -> [Element t]
default toList :: (Foldable f, t ~ f a, Element t ~ a) => t -> [Element t]
toList = Foldable.toList
{-# INLINE toList #-}
-- | Checks whether container is empty.
--
-- >>> null @Text ""
-- True
-- >>> null @Text "aba"
-- False
null :: t -> Bool
default null :: (Foldable f, t ~ f a) => t -> Bool
null = Foldable.null
{-# INLINE null #-}
foldr :: (Element t -> b -> b) -> b -> t -> b
default foldr :: (Foldable f, t ~ f a, Element t ~ a) => (Element t -> b -> b) -> b -> t -> b
foldr = Foldable.foldr
{-# INLINE foldr #-}
foldl :: (b -> Element t -> b) -> b -> t -> b
default foldl :: (Foldable f, t ~ f a, Element t ~ a) => (b -> Element t -> b) -> b -> t -> b
foldl = Foldable.foldl
{-# INLINE foldl #-}
foldl' :: (b -> Element t -> b) -> b -> t -> b
default foldl' :: (Foldable f, t ~ f a, Element t ~ a) => (b -> Element t -> b) -> b -> t -> b
foldl' = Foldable.foldl'
{-# INLINE foldl' #-}
length :: t -> Int
default length :: (Foldable f, t ~ f a) => t -> Int
length = Foldable.length
{-# INLINE length #-}
elem :: Eq (Element t) => Element t -> t -> Bool
default elem :: ( Foldable f
, t ~ f a
, Element t ~ a
, Eq a
) => Element t -> t -> Bool
elem = Foldable.elem
{-# INLINE elem #-}
foldMap :: Monoid m => (Element t -> m) -> t -> m
foldMap f = foldr (mappend . f) mempty
{-# INLINE foldMap #-}
fold :: Monoid (Element t) => t -> Element t
fold = foldMap id
{-# INLINE fold #-}
foldr' :: (Element t -> b -> b) -> b -> t -> b
foldr' f z0 xs = foldl f' id xs z0
where f' k x z = k $! f x z
{-# INLINE foldr' #-}
notElem :: Eq (Element t) => Element t -> t -> Bool
notElem x = not . elem x
{-# INLINE notElem #-}
all :: (Element t -> Bool) -> t -> Bool
all p = getAll #. foldMap (All #. p)
any :: (Element t -> Bool) -> t -> Bool
any p = getAny #. foldMap (Any #. p)
{-# INLINE all #-}
{-# INLINE any #-}
and :: (Element t ~ Bool) => t -> Bool
and = getAll #. foldMap All
or :: (Element t ~ Bool) => t -> Bool
or = getAny #. foldMap Any
{-# INLINE and #-}
{-# INLINE or #-}
find :: (Element t -> Bool) -> t -> Maybe (Element t)
find p = getFirst . foldMap (\ x -> First (if p x then Just x else Nothing))
{-# INLINE find #-}
safeHead :: t -> Maybe (Element t)
safeHead = foldr (\x _ -> Just x) Nothing
{-# INLINE safeHead #-}
safeMaximum :: Ord (Element t) => t -> Maybe (Element t)
default safeMaximum
:: (Foldable f, t ~ f a, Element t ~ a, Ord (Element t))
=> t -> Maybe (Element t)
safeMaximum = checkingNotNull Foldable.maximum
{-# INLINE safeMaximum #-}
safeMinimum :: Ord (Element t) => t -> Maybe (Element t)
default safeMinimum
:: (Foldable f, t ~ f a, Element t ~ a, Ord (Element t))
=> t -> Maybe (Element t)
safeMinimum = checkingNotNull Foldable.minimum
{-# INLINE safeMinimum #-}
safeFoldr1 :: (Element t -> Element t -> Element t) -> t -> Maybe (Element t)
safeFoldr1 f xs = foldr mf Nothing xs
where
mf x m = Just (case m of
Nothing -> x
Just y -> f x y)
{-# INLINE safeFoldr1 #-}
safeFoldl1 :: (Element t -> Element t -> Element t) -> t -> Maybe (Element t)
safeFoldl1 f xs = foldl mf Nothing xs
where
mf m y = Just (case m of
Nothing -> y
Just x -> f x y)
{-# INLINE safeFoldl1 #-}
-- | Helper for lifting operations which require container to be not empty.
checkingNotNull :: Container t => (t -> Element t) -> t -> Maybe (Element t)
checkingNotNull f t
| null t = Nothing
| otherwise = Just $ f t
{-# INLINE checkingNotNull #-}
----------------------------------------------------------------------------
-- Instances for monomorphic containers
----------------------------------------------------------------------------
instance Container T.Text where
type Element T.Text = Char
toList = T.unpack
{-# INLINE toList #-}
null = T.null
{-# INLINE null #-}
foldr = T.foldr
{-# INLINE foldr #-}
foldl = T.foldl
{-# INLINE foldl #-}
foldl' = T.foldl'
{-# INLINE foldl' #-}
safeFoldr1 f = checkingNotNull (T.foldr1 f)
{-# INLINE safeFoldr1 #-}
safeFoldl1 f = checkingNotNull (T.foldl1 f)
{-# INLINE safeFoldl1 #-}
length = T.length
{-# INLINE length #-}
elem c = T.isInfixOf (T.singleton c) -- there are rewrite rules for this
{-# INLINE elem #-}
safeMaximum = checkingNotNull T.maximum
{-# INLINE safeMaximum #-}
safeMinimum = checkingNotNull T.minimum
{-# INLINE safeMinimum #-}
all = T.all
{-# INLINE all #-}
any = T.any
{-# INLINE any #-}
find = T.find
{-# INLINE find #-}
safeHead = fmap fst . T.uncons
{-# INLINE safeHead #-}
instance Container TL.Text where
type Element TL.Text = Char
toList = TL.unpack
{-# INLINE toList #-}
null = TL.null
{-# INLINE null #-}
foldr = TL.foldr
{-# INLINE foldr #-}
foldl = TL.foldl
{-# INLINE foldl #-}
foldl' = TL.foldl'
{-# INLINE foldl' #-}
safeFoldr1 f = checkingNotNull (TL.foldr1 f)
{-# INLINE safeFoldr1 #-}
safeFoldl1 f = checkingNotNull (TL.foldl1 f)
{-# INLINE safeFoldl1 #-}
length = fromIntegral . TL.length
{-# INLINE length #-}
-- will be okay thanks to rewrite rules
elem c s = TL.isInfixOf (TL.singleton c) s
{-# INLINE elem #-}
safeMaximum = checkingNotNull TL.maximum
{-# INLINE safeMaximum #-}
safeMinimum = checkingNotNull TL.minimum
{-# INLINE safeMinimum #-}
all = TL.all
{-# INLINE all #-}
any = TL.any
{-# INLINE any #-}
find = TL.find
{-# INLINE find #-}
safeHead = fmap fst . TL.uncons
{-# INLINE safeHead #-}
instance Container BS.ByteString where
type Element BS.ByteString = Word8
toList = BS.unpack
{-# INLINE toList #-}
null = BS.null
{-# INLINE null #-}
foldr = BS.foldr
{-# INLINE foldr #-}
foldl = BS.foldl
{-# INLINE foldl #-}
foldl' = BS.foldl'
{-# INLINE foldl' #-}
safeFoldr1 f = checkingNotNull (BS.foldr1 f)
{-# INLINE safeFoldr1 #-}
safeFoldl1 f = checkingNotNull (BS.foldl1 f)
{-# INLINE safeFoldl1 #-}
length = BS.length
{-# INLINE length #-}
elem = BS.elem
{-# INLINE elem #-}
notElem = BS.notElem
{-# INLINE notElem #-}
safeMaximum = checkingNotNull BS.maximum
{-# INLINE safeMaximum #-}
safeMinimum = checkingNotNull BS.minimum
{-# INLINE safeMinimum #-}
all = BS.all
{-# INLINE all #-}
any = BS.any
{-# INLINE any #-}
find = BS.find
{-# INLINE find #-}
safeHead = fmap fst . BS.uncons
{-# INLINE safeHead #-}
instance Container BSL.ByteString where
type Element BSL.ByteString = Word8
toList = BSL.unpack
{-# INLINE toList #-}
null = BSL.null
{-# INLINE null #-}
foldr = BSL.foldr
{-# INLINE foldr #-}
foldl = BSL.foldl
{-# INLINE foldl #-}
foldl' = BSL.foldl'
{-# INLINE foldl' #-}
safeFoldr1 f = checkingNotNull (BSL.foldr1 f)
{-# INLINE safeFoldr1 #-}
safeFoldl1 f = checkingNotNull (BSL.foldl1 f)
{-# INLINE safeFoldl1 #-}
length = fromIntegral . BSL.length
{-# INLINE length #-}
elem = BSL.elem
{-# INLINE elem #-}
notElem = BSL.notElem
{-# INLINE notElem #-}
safeMaximum = checkingNotNull BSL.maximum
{-# INLINE safeMaximum #-}
safeMinimum = checkingNotNull BSL.minimum
{-# INLINE safeMinimum #-}
all = BSL.all
{-# INLINE all #-}
any = BSL.any
{-# INLINE any #-}
find = BSL.find
{-# INLINE find #-}
safeHead = fmap fst . BSL.uncons
{-# INLINE safeHead #-}
instance Container IntSet where
type Element IntSet = Int
toList = IS.toList
{-# INLINE toList #-}
null = IS.null
{-# INLINE null #-}
foldr = IS.foldr
{-# INLINE foldr #-}
foldl = IS.foldl
{-# INLINE foldl #-}
foldl' = IS.foldl'
{-# INLINE foldl' #-}
length = IS.size
{-# INLINE length #-}
elem = IS.member
{-# INLINE elem #-}
safeMaximum = checkingNotNull IS.findMax
{-# INLINE safeMaximum #-}
safeMinimum = checkingNotNull IS.findMin
{-# INLINE safeMinimum #-}
safeHead = fmap fst . IS.minView
{-# INLINE safeHead #-}
----------------------------------------------------------------------------
-- Efficient instances
----------------------------------------------------------------------------
instance Ord v => Container (Set v) where
elem = Set.member
{-# INLINE elem #-}
notElem = Set.notMember
{-# INLINE notElem #-}
#if MIN_VERSION_hashable(1,4,0)
instance (Hashable v) => Container (HashSet v) where
#else
instance (Eq v, Hashable v) => Container (HashSet v) where
#endif
elem = HashSet.member
{-# INLINE elem #-}
----------------------------------------------------------------------------
-- Boilerplate instances (duplicate Foldable)
----------------------------------------------------------------------------
-- Basic types
instance Container [a]
instance Container (Const a b)
-- Algebraic types
instance Container (Dual a)
instance Container (First a)
instance Container (Last a)
instance Container (Product a)
instance Container (Sum a)
instance Container (NonEmpty a)
instance Container (ZipList a)
-- Containers
instance Container (HashMap k v)
instance Container (IntMap v)
instance Container (Map k v)
instance Container (Seq a)
instance Container (Vector a)
----------------------------------------------------------------------------
-- Derivative functions
----------------------------------------------------------------------------
-- TODO: I should put different strings for different versions but I'm too lazy to do it...
{- | Similar to 'foldl'' but takes a function with its arguments flipped.
>>> flipfoldl' (/) 5 [2,3] :: Rational
15 % 2
-}
flipfoldl' :: (Container t, Element t ~ a) => (a -> b -> b) -> b -> t -> b
flipfoldl' f = foldl' (flip f)
{-# INLINE flipfoldl' #-}
-- | Stricter version of 'Prelude.sum'.
--
-- >>> sum [1..10]
-- 55
-- >>> sum (Just 3)
-- ...
-- • Do not use 'Foldable' methods on Maybe
-- Suggestions:
-- Instead of
-- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
-- use
-- whenJust :: Applicative f => Maybe a -> (a -> f ()) -> f ()
-- whenRight :: Applicative f => Either l r -> (r -> f ()) -> f ()
-- ...
-- Instead of
-- fold :: (Foldable t, Monoid m) => t m -> m
-- use
-- maybeToMonoid :: Monoid m => Maybe m -> m
-- ...
sum :: (Container t, Num (Element t)) => t -> Element t
sum = foldl' (+) 0
-- | Stricter version of 'Prelude.product'.
--
-- >>> product [1..10]
-- 3628800
-- >>> product (Right 3)
-- ...
-- • Do not use 'Foldable' methods on Either
-- Suggestions:
-- Instead of
-- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
-- use
-- whenJust :: Applicative f => Maybe a -> (a -> f ()) -> f ()
-- whenRight :: Applicative f => Either l r -> (r -> f ()) -> f ()
-- ...
-- Instead of
-- fold :: (Foldable t, Monoid m) => t m -> m
-- use
-- maybeToMonoid :: Monoid m => Maybe m -> m
-- ...
product :: (Container t, Num (Element t)) => t -> Element t
product = foldl' (*) 1
{- | Constrained to 'Container' version of 'Data.Foldable.traverse_'.
>>> traverse_ putTextLn ["foo", "bar"]
foo
bar
-}
traverse_
:: (Container t, Applicative f)
=> (Element t -> f b) -> t -> f ()
traverse_ f = foldr ((*>) . f) pass
{- | Constrained to 'Container' version of 'Data.Foldable.for_'.
>>> for_ [1 .. 5 :: Int] $ \i -> when (even i) (print i)
2
4
-}
for_
:: (Container t, Applicative f)
=> t -> (Element t -> f b) -> f ()
for_ = flip traverse_
{-# INLINE for_ #-}
{- | Constrained to 'Container' version of 'Data.Foldable.mapM_'.
>>> mapM_ print [True, False]
True
False
-}
mapM_
:: (Container t, Monad m)
=> (Element t -> m b) -> t -> m ()
mapM_ f= foldr ((>>) . f) pass
{- | Constrained to 'Container' version of 'Data.Foldable.forM_'.
>>> forM_ [True, False] print
True
False
-}
forM_
:: (Container t, Monad m)
=> t -> (Element t -> m b) -> m ()
forM_ = flip mapM_
{-# INLINE forM_ #-}
{- | Constrained to 'Container' version of 'Data.Foldable.sequenceA_'.
>>> sequenceA_ [putTextLn "foo", print True]
foo
True
-}
sequenceA_
:: (Container t, Applicative f, Element t ~ f a)
=> t -> f ()
sequenceA_ = foldr (*>) pass
{- | Constrained to 'Container' version of 'Data.Foldable.sequence_'.
>>> sequence_ [putTextLn "foo", print True]
foo
True
-}
sequence_
:: (Container t, Monad m, Element t ~ m a)
=> t -> m ()
sequence_ = foldr (>>) pass
{- | Constrained to 'Container' version of 'Data.Foldable.asum'.
>>> asum [Nothing, Just [False, True], Nothing, Just [True]]
Just [False,True]
-}
asum
:: (Container t, Alternative f, Element t ~ f a)
=> t -> f a
asum = foldr (<|>) empty
{-# INLINE asum #-}
{- | Version of 'Data.Foldable.concatMap' constrained to 'Container'.
>>> concatMap (\x -> [x + 1, x + 2]) [1, 2, 3]
[2,3,3,4,4,5]
@since 1.8.0
-}
concatMap :: Container c => (Element c -> [b]) -> c -> [b]
concatMap f = Data.List.concatMap f . toList
{-# INLINE concatMap #-}
----------------------------------------------------------------------------
-- Disallowed instances
----------------------------------------------------------------------------
type family DisallowInstance (z :: Symbol) :: ErrorMessage where
DisallowInstance z = Text "Do not use 'Foldable' methods on " :<>: Text z
:$$: Text "Suggestions:"
:$$: Text " Instead of"
:$$: Text " for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()"
:$$: Text " use"
:$$: Text " whenJust :: Applicative f => Maybe a -> (a -> f ()) -> f ()"
:$$: Text " whenRight :: Applicative f => Either l r -> (r -> f ()) -> f ()"
:$$: Text ""
:$$: Text " Instead of"
:$$: Text " fold :: (Foldable t, Monoid m) => t m -> m"
:$$: Text " use"
:$$: Text " maybeToMonoid :: Monoid m => Maybe m -> m"
:$$: Text ""
instance TypeError (DisallowInstance "tuple") => Container (a, b)
instance TypeError (DisallowInstance "Maybe") => Container (Maybe a)
instance TypeError (DisallowInstance "Either") => Container (Either a b)
instance TypeError (DisallowInstance "Identity") => Container (Identity a)
----------------------------------------------------------------------------
-- One
----------------------------------------------------------------------------
-- | Type class for types that can be created from one element. @singleton@
-- is lone name for this function. Also constructions of different type differ:
-- @:[]@ for lists, two arguments for Maps. Also some data types are monomorphic.
--
-- >>> one True :: [Bool]
-- [True]
-- >>> one 'a' :: Text
-- "a"
-- >>> one (3, "hello") :: HashMap Int String
-- fromList [(3,"hello")]
class One x where
type OneItem x
-- | Create a list, map, 'Text', etc from a single element.
one :: OneItem x -> x
-- Lists
instance One [a] where
type OneItem [a] = a
one = (:[])
{-# INLINE one #-}
instance One (NE.NonEmpty a) where
type OneItem (NE.NonEmpty a) = a
one = (NE.:|[])
{-# INLINE one #-}
instance One (SEQ.Seq a) where
type OneItem (SEQ.Seq a) = a
one = (SEQ.empty SEQ.|>)
{-# INLINE one #-}
-- Monomorphic sequences
instance One T.Text where
type OneItem T.Text = Char
one = T.singleton
{-# INLINE one #-}
instance One TL.Text where
type OneItem TL.Text = Char
one = TL.singleton
{-# INLINE one #-}
instance One BS.ByteString where
type OneItem BS.ByteString = Word8
one = BS.singleton
{-# INLINE one #-}
instance One BSL.ByteString where
type OneItem BSL.ByteString = Word8
one = BSL.singleton
{-# INLINE one #-}
-- Maps
instance One (M.Map k v) where
type OneItem (M.Map k v) = (k, v)
one = uncurry M.singleton
{-# INLINE one #-}
instance Hashable k => One (HM.HashMap k v) where
type OneItem (HM.HashMap k v) = (k, v)
one = uncurry HM.singleton
{-# INLINE one #-}
instance One (IM.IntMap v) where
type OneItem (IM.IntMap v) = (Int, v)
one = uncurry IM.singleton
{-# INLINE one #-}
-- Sets
instance One (Set v) where
type OneItem (Set v) = v
one = Set.singleton
{-# INLINE one #-}
instance Hashable v => One (HashSet v) where
type OneItem (HashSet v) = v
one = HashSet.singleton
{-# INLINE one #-}
instance One IntSet where
type OneItem IntSet = Int
one = IS.singleton
{-# INLINE one #-}
-- Vectors
instance One (Vector a) where
type OneItem (Vector a) = a
one = V.singleton
{-# INLINE one #-}
instance VU.Unbox a => One (VU.Vector a) where
type OneItem (VU.Vector a) = a
one = VU.singleton
{-# INLINE one #-}
instance VP.Prim a => One (VP.Vector a) where
type OneItem (VP.Vector a) = a
one = VP.singleton
{-# INLINE one #-}
instance VS.Storable a => One (VS.Vector a) where
type OneItem (VS.Vector a) = a
one = VS.singleton
{-# INLINE one #-}
----------------------------------------------------------------------------
-- Utils
----------------------------------------------------------------------------
(#.) :: Coercible b c => (b -> c) -> (a -> b) -> (a -> c)
(#.) _f = coerce
{-# INLINE (#.) #-}