-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpu_example.py
596 lines (532 loc) · 28.6 KB
/
gpu_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import argparse
import logging
import os
import time
from collections import OrderedDict
from contextlib import suppress
from datetime import datetime
from functools import partial
from tqdm import tqdm
from argparse import ArgumentParser
from collections import deque
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torchvision.utils
import yaml
from torch.nn.parallel import DistributedDataParallel as NativeDDP
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from timm import utils
from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
from timm.layers import convert_splitbn_model, convert_sync_batchnorm, set_fast_norm
from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, LabelSmoothingCrossEntropy
from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, model_parameters
from timm.optim import create_optimizer_v2, optimizer_kwargs
# from timm.scheduler import create_scheduler_v2, scheduler_kwargs
from timm.utils import ApexScaler, NativeScaler
# device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
from sltimmv2.models import *
from sl_utils import WandBLogger
import sl_utils
parser = ArgumentParser(description = 'Pytorch Imagenet Training')
parser.add_argument('--dataset', default = 'Imagenet')
parser.add_argument('--data_dir', help = 'Path to the dataset')
parser.add_argument('--train_split', default = 'train', help = 'Train folder name')
parser.add_argument('--val_split', default = 'val', help = 'Validation folder name')
parser.add_argument('--batch_size', type = int, default = 128)
parser.add_argument('--dataset_download', default = False)
parser.add_argument('--validation_batch_size', type = int, default = 128)
parser.add_argument('--checkpoint-hist', default = 10, type = int)
parser.add_argument('--resume', default = False, type = bool)
parser.add_argument('--epochs', default = 300, type = int)
parser.add_argument('--start-epoch', default = 0, type = int)
## model parameters
parser.add_argument('--model', help = 'name of the model', default = 'resnet50')
parser.add_argument('--pretrained', default = True)
parser.add_argument('--initial_checkpoint', default = None)
parser.add_argument('--num_classes', default = 1000)
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--bn-momentum', type=float, default=None,
help='BatchNorm momentum override (if not None)')
parser.add_argument('--bn-eps', type=float, default=None,
help='BatchNorm epsilon override (if not None)')
parser.add_argument('--sync-bn', action='store_true',
help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
parser.add_argument('--dist-bn', type=str, default='reduce',
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
parser.add_argument('--split-bn', action='store_true',
help='Enable separate BN layers per augmentation split.')
parser.add_argument('--grad-accum-steps', default = 1)
parser.add_argument('--log_interval', default = 100, type = int)
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "sgd")')
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: None, use opt default)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='Optimizer momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=2e-5,
help='weight decay (default: 2e-5)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='norm',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
parser.add_argument('--layer-decay', type=float, default=None,
help='layer-wise learning rate decay (default: None)')
parser.add_argument('--opt-kwargs', nargs='*', default={}, action=utils.ParseKwargs)
## Learning rate parameters
parser.add_argument('--sched', type=str, default='cosine', metavar='SCHEDULER',
help='LR scheduler (default: "step"')
parser.add_argument('--sched-on-updates', action='store_true', default=False,
help='Apply LR scheduler step on update instead of epoch end.')
parser.add_argument('--lr', type=float, default=0.4, metavar='LR',
help='learning rate, overrides lr-base if set (default: None)')
parser.add_argument('--lr-base', type=float, default=0.4, metavar='LR',
help='base learning rate: lr = lr_base * global_batch_size / base_size')
parser.add_argument('--lr-base-size', type=int, default=128, metavar='DIV',
help='base learning rate batch size (divisor, default: 256).')
parser.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE',
help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
help='learning rate cycle len multiplier (default: 1.0)')
parser.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT',
help='amount to decay each learning rate cycle (default: 0.5)')
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
help='learning rate cycle limit, cycles enabled if > 1')
parser.add_argument('--lr-k-decay', type=float, default=1.0,
help='learning rate k-decay for cosine/poly (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-3, metavar='LR',
help='warmup learning rate (default: 1e-5)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (default: 0)')
# parser.add_argument('--epochs', type=int, default=10, metavar='N',
# help='number of epochs to train (default: 300)')
parser.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
# parser.add_argument('--start-epoch', default=None, type=int, metavar='N',
# help='manual epoch number (useful on restarts)')
parser.add_argument('--decay-milestones', default=[90, 180, 270], type=int, nargs='+', metavar="MILESTONES",
help='list of decay epoch indices for multistep lr. must be increasing')
parser.add_argument('--decay-epochs', type=float, default=10, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup-prefix', action='store_true', default=False,
help='Exclude warmup period from decay schedule.'),
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10)')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# parser.add_argument('Augmentation and regularization parameters')
parser.add_argument('--no-aug', action='store_true', default=False,
help='Disable all training augmentation, override other train aug args')
parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
help='Random resize scale (default: 0.08 1.0)')
parser.add_argument('--ratio', type=float, nargs='+', default=[3. / 4., 4. / 3.], metavar='RATIO',
help='Random resize aspect ratio (default: 0.75 1.33)')
parser.add_argument('--hflip', type=float, default=0.5,
help='Horizontal flip training aug probability')
parser.add_argument('--vflip', type=float, default=0.,
help='Vertical flip training aug probability')
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
parser.add_argument('--aug-repeats', type=float, default=0,
help='Number of augmentation repetitions (distributed training only) (default: 0)')
parser.add_argument('--aug-splits', type=int, default=0,
help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
parser.add_argument('--jsd-loss', action='store_true', default=False,
help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
parser.add_argument('--bce-loss', action='store_true', default=False,
help='Enable BCE loss w/ Mixup/CutMix use.')
parser.add_argument('--bce-target-thresh', type=float, default=None,
help='Threshold for binarizing softened BCE targets (default: None, disabled)')
parser.add_argument('--reprob', type=float, default=0., metavar='PCT',
help='Random erase prob (default: 0.)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
parser.add_argument('--mixup', type=float, default=0.0,
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
parser.add_argument('--cutmix', type=float, default=0.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
parser.add_argument('--smoothing', type=float, default=0.01,
help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='random',
help='Training interpolation (random, bilinear, bicubic default: "random")')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',help='Dropout rate (default: 0.)')
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
parser.add_argument("--rank", default=0, type=int)
parser.add_argument('--no-prefetcher', action='store_true', default=False,
help='disable fast prefetcher')
parser.add_argument('-j', '--workers', type=int, default=1, metavar='N',
help='how many training processes to use (default: 4)')
parser.add_argument('--amp', action='store_true', default=False,
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
parser.add_argument('--amp-dtype', default='float16', type=str,
help='lower precision AMP dtype (default: float16)')
parser.add_argument('--amp-impl', default='native', type=str,
help='AMP impl to use, "native" or "apex" (default: native)')
parser.add_argument('--no-ddp-bb', action='store_true', default=False,
help='Force broadcast buffers for native DDP to off.')
parser.add_argument('--synchronize-step', action='store_true', default=False,
help='torch.cuda.synchronize() end of each step')
parser.add_argument('--pin-mem', action='store_true', default=False,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--output', default='checkpoint', type=str, metavar='PATH',
help='path to output folder (default: none, current dir)')
parser.add_argument('--experiment', default='', type=str, metavar='NAME',
help='name of train experiment, name of sub-folder for output')
parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
help='Best metric (default: "top1"')
parser.add_argument('--tta', type=int, default=0, metavar='N',
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
help='use the multi-epochs-loader to save time at the beginning of every epoch')
parser.add_argument('--log-wandb', action='store_true', default=False,
help='log training and validation metrics to wandb')
parser.add_argument('--log-dir', type = str, default = 'logs', help = 'directory to store logs')
args = parser.parse_args()
_logger = logging.getLogger('train')
## train for one epoch
def train_one_epoch(model, start_epoch, train_dataloader, loss_fn, optimizer, device, lr_scheduler_values = None, lr_scheduler = None, log_writer = None):
model.train()
metric_logger = sl_utils.MetricLogger(delimiter = ' ')
header = 'TRAIN epoch: [{}]'.format(start_epoch)
start_step = start_epoch*len(train_dataloader)
for i, (input,target) in enumerate(tqdm(train_dataloader)):
optimizer.zero_grad()
input, target = input.to(device), target.to(device)
output = model(input)
if isinstance(output, (tuple, list)):
output = output[0]
loss = loss_fn(output, target)
acc1, acc = sl_utils.accuracy(output, target, args, topk = (1,5))
loss.backward()
# if args.distributed:
# # loss = utils.reduce_tensor(loss.data, args.world_size)
# # print(loss.item())
# metric_logger.update(loss = loss.item())
# # acc1 = utils.reduce_tensor(acc1, args.world_size)
# metric_logger.update(top1_accuracy = acc1.item())
# # acc = utils.reduce_tensor(acc, args.world_size)
# metric_logger.update(top5_accuracy = acc.item())
# else:
metric_logger.update(loss = loss.item())
metric_logger.update(top1_accuracy = acc1.item())
metric_logger.update(top5_accuracy = acc.item())
# # print(optimizer.param_groups)
# lrl = [param_group['lr'] for param_group in optimizer.param_groups] #current Learning rate
# lr = lrl[-1]
# if utils.is_primary(args) and lr_scheduler:
# lr_scheduler.step(start_step + i)
if len(lr_scheduler_values)>0:
for k, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = lr_scheduler_values[start_step+i] #* param_group['lr_scale']
optimizer.step()
if args.distributed and utils.is_primary(args):
metric_logger.synchronize_between_processes()
if utils.is_primary(args) and log_writer!=None and ((start_step + i)%args.log_interval == 0):
# print('Writing Logs')
print('In log interval')
log_writer.set_step(None)
log_writer.update(train_loss = metric_logger.loss.avg, head = 'train')
log_writer.update(train_top1_accuracy = metric_logger.top1_accuracy.avg, head = 'train')
log_writer.update(train_top5_accuracy = metric_logger.top5_accuracy.avg, head = 'train')
log_writer.update(epoch = start_epoch, head = 'train')
log_writer.update(commit=True, learning_rate = lr_scheduler_values[start_step+i], head = 'train')
return OrderedDict([('loss', metric_logger.loss.global_avg), ('top1', metric_logger.top1_accuracy.global_avg), ('top5', metric_logger.top5_accuracy.global_avg)])
def validate(model, start_epoch, val_dataloader , loss_fn, device, log_writer = None):
model.eval()
metric_logger = sl_utils.MetricLogger(delimiter=" ")
header = 'EVAL epoch: [{}]'.format(start_epoch)
#start_step = log_step
for i, (input, target) in enumerate(tqdm(val_dataloader)):
input, target = input.to(device), target.to(device)
output = model(input)
if isinstance(output, (tuple, list)):
output = output[0]
loss = loss_fn(output, target)
acc1, acc = utils.accuracy(output, target, topk = (1,5))
# if utils.is_primary(args):
# print(acc1.item(), acc.item(), f'world size : {args.world_size}')
loss.backward()
# if args.distributed:
# loss = utils.reduce_tensor(loss.data, args.world_size)
# metric_logger.update(loss = loss.item())
# acc1 = utils.reduce_tensor(acc1, args.world_size)
# metric_logger.update(top1_accuracy = acc1.item())
# acc = utils.reduce_tensor(acc, args.world_size)
# metric_logger.update(top5_accuracy = acc.item())
# print(f'After reduce tensor {acc.item()} {acc1.item()}')
# else:
metric_logger.update(loss = loss.item())
metric_logger.update(top1_accuracy = acc1.item())
metric_logger.update(top5_accuracy = acc.item())
if args.distributed and utils.is_prmiary(args):
metric_logger.synchronize_between_processes()
if utils.is_primary(args) and log_writer!=None:
log_writer.set_step(None)
log_writer.update(val_loss = metric_logger.loss.global_avg, head = 'val')
log_writer.update(val_top1_accuracy = metric_logger.top1_accuracy.global_avg, head = 'val')
log_writer.update(val_top5_accuracy = metric_logger.top5_accuracy.global_avg, heaad = 'val')
log_writer.update(commit=True, epoch = start_epoch, head = 'val')
return OrderedDict([('loss', metric_logger.loss.global_avg), ('top1', metric_logger.top1_accuracy.global_avg), ('top5', metric_logger.top5_accuracy.global_avg)])
## main function
def main():
num_epochs = args.epochs
log_writer = None
device = utils.init_distributed_device(args)
if utils.is_primary(args):
print(f"Is distributed training : {args.distributed}")
if args.distributed:
_logger.info(
'Training in distributed mode with multiple processes, 1 device per process.'
f'Process {args.rank}, total {args.world_size}, device {args.device}.')
else:
_logger.info(f'Training with a single process on 1 device ({args.device}).')
if args.log_wandb and args.log_dir != None:
os.makedirs(args.log_dir, exist_ok = True)
log_writer = WandBLogger(log_dir = args.log_dir , args = args)
else:
log_writer = None
assert args.rank >= 0
dataset_train = create_dataset(
args.dataset,
root=args.data_dir,
split=args.train_split,
is_training=True,
batch_size=args.batch_size,
seed=1,
)
dataset_eval = create_dataset(
args.dataset,
root=args.data_dir,
split=args.val_split,
is_training=False,
batch_size=args.batch_size,
)
## create model
in_chans = 3
print('Dataset Created')
## load custom model
model = create_model(
args.model,
pretrained=args.pretrained,
in_chans=in_chans,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=args.drop_block,
global_pool=args.gp,
bn_momentum=args.bn_momentum,
bn_eps=args.bn_eps,
# scriptable=args.torchscript,
checkpoint_path=args.initial_checkpoint,
)
model = model.to(device)
print("Model Created")
if utils.is_primary(args):
_logger.info(
f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}')
if args.distributed:
if utils.is_primary(args):
_logger.info("Using native Torch DistributedDataParallel.")
model = NativeDDP(model, device_ids=[device], find_unused_parameters = True)
## create data loader
# setup mixup / cutmix
num_aug_splits = 0
collate_fn = None
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_args = dict(
mixup_alpha=args.mixup,
cutmix_alpha=args.cutmix,
cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob,
switch_prob=args.mixup_switch_prob,
mode=args.mixup_mode,
label_smoothing=args.smoothing,
num_classes=args.num_classes
)
if args.prefetcher:
assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup)
collate_fn = FastCollateMixup(**mixup_args)
else:
mixup_fn = Mixup(**mixup_args)
args.prefetcher = not args.no_prefetcher
# wrap dataset in AugMix helper
if num_aug_splits > 1:
dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)
# create data loaders w/ augmentation pipeiine
data_config = resolve_data_config(vars(args), model=model, verbose=utils.is_primary(args))
train_interpolation = args.train_interpolation
if args.no_aug or not train_interpolation:
train_interpolation = data_config['interpolation']
loader_train = create_loader(
dataset_train,
input_size=data_config['input_size'],
batch_size=args.batch_size,
is_training=True,
use_prefetcher=args.prefetcher,
no_aug=args.no_aug,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
re_split=args.resplit,
scale=args.scale,
ratio=args.ratio,
hflip=args.hflip,
vflip=args.vflip,
color_jitter=args.color_jitter,
auto_augment=args.aa,
num_aug_repeats=args.aug_repeats,
num_aug_splits=num_aug_splits,
interpolation=train_interpolation,
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
distributed=args.distributed,
collate_fn=collate_fn,
pin_memory=args.pin_mem,
device=device,
use_multi_epochs_loader=args.use_multi_epochs_loader,
# worker_seeding=args.worker_seeding,
)
##irrelevant
eval_workers = args.workers
if args.val_split:
if args.distributed and ('tfds' in args.dataset or 'wds' in args.dataset):
# FIXME reduces validation padding issues when using TFDS, WDS w/ workers and distributed training
eval_workers = min(2, args.workers)
loader_eval = create_loader(
dataset_eval,
input_size=data_config['input_size'],
batch_size=args.validation_batch_size or args.batch_size,
is_training=False,
use_prefetcher=args.prefetcher,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=eval_workers,
distributed=args.distributed,
crop_pct=data_config['crop_pct'],
pin_memory=args.pin_mem,
device=device,
)
print("Data Loader created")
optimizer = create_optimizer_v2(
model,
**optimizer_kwargs(cfg=args),
**args.opt_kwargs,
)
# optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9)
loss_scaler = None
# optionally resume from a checkpoint
resume_epoch = None
if args.resume:
resume_epoch = resume_checkpoint(
model,
args.resume,
optimizer=None if args.no_resume_opt else optimizer,
loss_scaler=None if args.no_resume_opt else loss_scaler,
log_info=utils.is_primary(args),
)
print("Optimizer Created")
# Can be made adaptable to BCE and other losses check pytorch_image_models repo
if args.smoothing:
train_loss_fn = LabelSmoothingCrossEntropy(smoothing = args.smoothing).to(device)
else:
train_loss_fn = nn.CrossEntropyLoss().to(device)
validate_loss_fn = nn.CrossEntropyLoss().to(device)
print('Loss created')
eval_metrics = "loss"
model = model.to(device)
saver = None
if utils.is_primary(args):
if args.output:
os.makedirs(args.output, exist_ok=True)
saver = utils.CheckpointSaver(
model = model,
optimizer = optimizer,
args = args,
checkpoint_dir = args.output,
recovery_dir = args.output,
decreasing = eval_metrics,
max_history = args.checkpoint_hist
)
num_training_steps_per_epoch = len(dataset_train)//args.batch_size//args.world_size
updates_per_epoch = (len(loader_train) + args.grad_accum_steps - 1) // args.grad_accum_steps
# print(updates_per_epoch)
lr_scheduler = None
# lr_scheduler, num_epochs = create_scheduler_v2(
# optimizer,
# **scheduler_kwargs(args),
# updates_per_epoch= updates_per_epoch
# )
lr_scheduler_values = None
lr_scheduler_values = sl_utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs,
)
start_epoch = 0
if args.start_epoch is not None:
# a specified start_epoch will always override the resume epoch
start_epoch = args.start_epoch
elif resume_epoch is not None:
start_epoch = resume_epoch
if lr_scheduler is not None and start_epoch > 0:
if args.sched_on_updates:
lr_scheduler.step_update(start_epoch * updates_per_epoch)
else:
lr_scheduler.step(start_epoch)
print('Cosine Scheduler created')
for epoch in range(start_epoch, num_epochs):
print('training started')
if hasattr(dataset_train, 'set_epoch'):
dataset_train.set_epoch(epoch)
elif args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
loader_train.sampler.set_epoch(epoch)
if utils.is_primary(args) and log_writer is not None:
# print(epoch * num_training_steps_per_epoch)
log_writer.set_step(epoch * num_training_steps_per_epoch)
train_stats = train_one_epoch(model, epoch, loader_train, train_loss_fn, optimizer, device, lr_scheduler_values, lr_scheduler, log_writer)
val_stats = validate(model, epoch, loader_eval, validate_loss_fn, device, log_writer)
if utils.is_primary(args) and saver is not None:
best_metric, best_epoch = saver.save_checkpoint(epoch, metric = val_stats['loss'])
if utils.is_primary(args) and log_writer is not None:
log_writer.flush()
if __name__ == '__main__':
main()