-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbenchmark.py
executable file
·265 lines (228 loc) · 12 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
# coding: utf-8
# In[30]:
import os
import sys
import time
import subprocess
# get # of sockets and cpus
cpu_sockets = int(subprocess.check_output('cat /proc/cpuinfo | grep "physical id" | sort -u | wc -l', shell=True))
cpu_cores = os.cpu_count()
# check if pibench exists, clone and build if necessary
if not os.path.exists("./pibench"):
os.system("git clone --recursive https://github.com/sfu-dis/pibench.git")
os.system("cp replace_in_pb.cpp pibench/src/benchmark.cpp")
os.system("cd pibench && mkdir build && cd build && cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_TESTING=0 .. && make")
### Configure parameters
# Modify this according to your own machine configuration
cores = []
for i in range(0, cpu_cores, cpu_sockets):
cores.append(i)
print(cores)
# cores = [0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,\
# 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78];
numa_cores = []
for i in range(0, int(cpu_cores/2), cpu_sockets):
numa_cores.append(i)
for i in range(1, int(cpu_cores/2), cpu_sockets):
numa_cores.append(i)
print(numa_cores)
# numa_cores = [0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,\
# 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39];
repeat = 1 # # runs for each point
base_size = 100000000 # each run starts with 100M record base index (load phase)
seconds = 10 # followed by 10 seconds operation (only operation will be measured)
pibench_path = "pibench/build/src/PiBench" # default path to pibench executable
lib_dir = "wrappers/" # default path to binary folder
result_dir = "./results" # default path to folder for which results will be saved into
pool_path = "" # by default PMem pool will be created in current dir
numactl = "numactl --membind=0"
base_command = "sudo LD_PRELOAD=/usr/lib64/libjemalloc.so"
# "HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"
Uniform = ["HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"]
uniform_threads = [40,30,20,10,5,1] # [40,30,20,10,5,1] customize your choice of data points
uniform_ops = ["-r 1","-r 0 -i 1","-r 0 -u 1","-r 0 -s 1"] # "-r 1","-r 0 -i 1","-r 0 -u 1","-r 0 -s 1"
# "HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"
Skewed = ["HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"]
skewed_threads = [40,30,20,10,5,1] # [40,30,20,10,5,1]
skewed_ops = ["-r 1","-r 0 -u 1","-r 0 -s 1"] # "-r 1","-r 0 -u 1","-r 0 -s 1"
self_similar = 0.2
# "HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"
Mixed = ["HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"]
mixed_threads = [40,30,20,10,5,1] # [40,30,20,10,5,1]
mixed_ops = ["-r 0.9 -i 0.1","-r 0.5 -i 0.5","-r 0.1 -i 0.9"] # "-r 0.9 -i 0.1","-r 0.5 -i 0.5","-r 0.1 -i 0.9"
# "HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"
Latency = ["HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"]
latency_threads = [40,30,20,10,5,1] # [40,30,20,10,5,1]
latency_ops = ["-r 1","-r 0 -i 1","-r 0 -s 1"] # "-r 1","-r 0 -i 1","-r 0 -u 1","-r 0 -s 1"
sampling = 0.1
# "HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"
NUMA = ["HOT","Masstree","ROART_DRAM","ROART_DCMM","ROART_PMDK","FPTree_DRAM","FPTree_PMEM","DPTree","LBTree_DRAM","LBTree_PMEM","PACTree"]
numa_threads = [40,30] # [40,30]
numa_ops = ["-r 1","-r 0 -i 1","-r 0 -u 1","-r 0 -s 1"] # "-r 1","-r 0 -i 1","-r 0 -u 1","-r 0 -s 1"
# "FPTree_PMEM","DPTree","LBTree_PMEM"
VarKey = ["FPTree_PMEM","DPTree","LBTree_PMEM"]
varkey_threads = [40,30,20,10,5,1] # [40,30,20,10,5,1]
varkey_ops = ["-r 1","-r 0 -i 1"] # "-r 1","-r 0 -i 1"
# Modify following dictionaries if you changed default pool paths/names or binary names
tree_to_pool = {"HOT":[], "Masstree":[], "ROART_DRAM":[], "ROART_DCMM":["pool"], "ROART_PMDK":["pool"],
"FPTree_DRAM":[], "FPTree_PMEM":["pool"], "DPTree":["pool"], "PACTree":["dl","sl","log"], "LBTree_DRAM":[], "LBTree_PMEM":["pool"]}
tree_to_lib = {"HOT":"libhot_wrapper.so", "Masstree":"libmasstree_wrapper.so", "ROART_DRAM":"libroart_dram.so",
"ROART_DCMM":"libroart_dcmm.so", "ROART_PMDK":"libroart_pmdk.so", "FPTree_DRAM":"libfptree_dram.so",
"FPTree_PMEM":"libfptree_pmem.so", "DPTree":"libdptree_pmem.so", "PACTree":"libpactree_pmem.so",
"LBTree_DRAM":"liblbtree_dram.so", "LBTree_PMEM":"liblbtree_pmem.so"}
tree_to_lib_varkey = {"FPTree_PMEM":"libfptree_pmem_varkey.so", "DPTree":"libdptree_pmem_varkey.so",
"LBTree_PMEM":"liblbtree_pmem_varkey.so"}
### Benchmark code start
def create_result_folders(tree, exp):
if not os.path.isdir(result_dir):
os.mkdir(result_dir);
tree_dir = result_dir + "/" + tree
if not os.path.isdir(tree_dir):
os.mkdir(tree_dir);
exp_dir = tree_dir + "/" + exp
if not os.path.isdir(exp_dir):
os.mkdir(exp_dir);
return exp_dir
def create_command(num_thread, cores, tree, op, exp):
l = []
for i in range(min(num_thread, len(cores))):
l.append(str(cores[i]))
s = "OMP_PLACES=\'{" + ",".join(l) + "}\' OMP_PROC_BIND=TRUE OMP_NESTED=TRUE"
if exp == "VarKey":
lib = tree_to_lib_varkey[tree]
else:
lib = tree_to_lib[tree]
command_list = [
numactl,
base_command,
s,
pibench_path,
lib_dir + "/" + lib,
"-n " + str(base_size),
"--mode time --seconds " + str(seconds),
op,
"-t " + str(num_thread)
]
if exp == "Skewed":
command_list.append("--distribution SELFSIMILAR --skew " + str(self_similar))
elif exp == "Latency":
command_list.append("--latency_sampling " + str(sampling))
command_list[0] = command_list[0] + " --cpunodebind=0"
del command_list[2]
if pool_path != "":
if tree == "PACTree":
command_list.append("--pool_path=" + pool_path)
else:
command_list.append("--pool_path=" + pool_path + "pool")
return " ".join(command_list)
op_to_filename = {"-r 1":"lookup", "-r 0 -i 1":"insert", "-r 0 -u 1":"update", "-r 0 -s 1":"scan",
"-r 0.9 -i 0.1":"read_heavy", "-r 0.5 -i 0.5":"balanced", "-r 0.1 -i 0.9":"write_heavy"}
# Uniform
for tree in Uniform:
exp_dir = create_result_folders(tree, "Uniform") # create result and tree folder if necessary
for op in uniform_ops:
file_path = exp_dir + "/" + tree.lower() + "_" + op_to_filename[op] + "_results.txt" # path to result file that will be (re)created
if os.path.exists(file_path): # remove old result file if exists
os.remove(file_path)
for thread in uniform_threads: # for each # thread
command = create_command(thread, cores, tree, op, "Uniform") + " >> " + file_path
print(command)
for i in range(repeat): # repeat runs at each data point
with open(file_path, 'a') as f:
f.write(command + '\n')
f.close()
os.system(command)
for p in tree_to_pool[tree]:
os.system("rm " + pool_path + p)
time.sleep(2)
# Skewed
for tree in Skewed:
exp_dir = create_result_folders(tree, "Skewed") # create result and tree folder if necessary
for op in skewed_ops:
file_path = exp_dir + "/" + tree.lower() + "_" + op_to_filename[op] + "_results.txt" # path to result file that will be (re)created
if os.path.exists(file_path): # remove old result file if exists
os.remove(file_path)
for thread in skewed_threads: # for each # thread
command = create_command(thread, cores, tree, op, "Skewed") + " >> " + file_path
print(command)
for i in range(repeat): # repeat runs at each data point
with open(file_path, 'a') as f:
f.write(command + '\n')
f.close()
os.system(command)
for p in tree_to_pool[tree]:
os.system("rm " + pool_path + p)
time.sleep(2)
# Mixed
for tree in Mixed:
exp_dir = create_result_folders(tree, "Mixed") # create result and tree folder if necessary
for op in mixed_ops:
file_path = exp_dir + "/" + tree.lower() + "_" + op_to_filename[op] + "_results.txt" # path to result file that will be (re)created
if os.path.exists(file_path): # remove old result file if exists
os.remove(file_path)
for thread in mixed_threads: # for each # thread
command = create_command(thread, cores, tree, op, "Mixed") + " >> " + file_path
print(command)
for i in range(repeat): # repeat runs at each data point
with open(file_path, 'a') as f:
f.write(command + '\n')
f.close()
os.system(command)
for p in tree_to_pool[tree]:
os.system("rm " + pool_path + p)
time.sleep(2)
# Latency
for tree in Latency:
exp_dir = create_result_folders(tree, "Latency") # create result and tree folder if necessary
for op in latency_ops:
file_path = exp_dir + "/" + tree.lower() + "_" + op_to_filename[op] + "_results.txt" # path to result file that will be (re)created
if os.path.exists(file_path): # remove old result file if exists
os.remove(file_path)
for thread in latency_threads: # for each # thread
command = create_command(thread, cores, tree, op, "Latency") + " >> " + file_path
print(command)
for i in range(repeat): # repeat runs at each data point
with open(file_path, 'a') as f:
f.write(command + '\n')
f.close()
os.system(command)
for p in tree_to_pool[tree]:
os.system("rm " + pool_path + p)
time.sleep(2)
# NUMA
for tree in NUMA:
exp_dir = create_result_folders(tree, "NUMA") # create result and tree folder if necessary
for op in numa_ops:
file_path = exp_dir + "/" + tree.lower() + "_" + op_to_filename[op] + "_results.txt" # path to result file that will be (re)created
if os.path.exists(file_path): # remove old result file if exists
os.remove(file_path)
for thread in numa_threads: # for each # thread
command = create_command(thread, numa_cores, tree, op, "NUMA") + " >> " + file_path
print(command)
for i in range(repeat): # repeat runs at each data point
with open(file_path, 'a') as f:
f.write(command + '\n')
f.close()
os.system(command)
for p in tree_to_pool[tree]:
os.system("rm " + pool_path + p)
time.sleep(2)
# VarKey
for tree in VarKey:
exp_dir = create_result_folders(tree, "VarKey") # create result and tree folder if necessary
for op in varkey_ops:
file_path = exp_dir + "/" + tree.lower() + "_" + op_to_filename[op] + "_results.txt" # path to result file that will be (re)created
if os.path.exists(file_path): # remove old result file if exists
os.remove(file_path)
for thread in varkey_threads: # for each # thread
command = create_command(thread, cores, tree, op, "VarKey") + " >> " + file_path
print(command)
for i in range(repeat): # repeat runs at each data point
with open(file_path, 'a') as f:
f.write(command + '\n')
f.close()
os.system(command)
for p in tree_to_pool[tree]:
os.system("rm " + pool_path + p)
time.sleep(2)