forked from bigscience-workshop/biomedical
-
Notifications
You must be signed in to change notification settings - Fork 1
/
n2c2_2011.py
562 lines (467 loc) · 19.1 KB
/
n2c2_2011.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset loader for the n2c2 2011 coref dataset.
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
The dataset consists of four archive files,
* Task_1C.zip
* Task_1C_Test_groundtruth.zip
* i2b2_Partners_Train_Release.tar.gz
* i2b2_Beth_Train_Release.tar.gz
The individual data files (inside the zip and tar archives) come in 4 types,
* docs (*.txt files): text of a patient record
* concepts (*.txt.con files): entities used as input to a coreference model
* chains (*.txt.chains files): chains (i.e. one or more) coreferent entities
* pairs (*.txt.pairs files): pairs of coreferent entities (not required)
The files comprising this dataset must be on the users local machine
in a single directory that is passed to `datasets.load_datset` via
the `data_dir` kwarg. This loader script will read the archive files
directly (i.e. the user should not uncompress, untar or unzip any of
the files). For example, if the following directory structure exists
on the users local machine,
n2c2_2011_coref
├── i2b2_Beth_Train_Release.tar.gz
├── i2b2_Partners_Train_Release.tar.gz
├── Task_1C_Test_groundtruth.zip
└── Task_1C.zip
Data Access
from https://www.i2b2.org/NLP/DataSets/Main.php
"As always, you must register AND submit a DUA for access. If you previously
accessed the data sets here on i2b2.org, you will need to set a new password
for your account on the Data Portal, but your original DUA will be retained."
"""
import os
import re
import tarfile
import zipfile
from collections import defaultdict
from typing import Dict, List, Match, Tuple
import datasets
from datasets import Features, Value
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_DATASETNAME = "n2c2_2011"
_DISPLAYNAME = "n2c2 2011 Coreference"
# https://academic.oup.com/jamia/article/19/5/786/716138
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = True
_CITATION = """\
@article{uzuner2012evaluating,
author = {
Uzuner, Ozlem and
Bodnari, Andreea and
Shen, Shuying and
Forbush, Tyler and
Pestian, John and
South, Brett R
},
title = "{Evaluating the state of the art in coreference resolution for electronic medical records}",
journal = {Journal of the American Medical Informatics Association},
volume = {19},
number = {5},
pages = {786-791},
year = {2012},
month = {02},
issn = {1067-5027},
doi = {10.1136/amiajnl-2011-000784},
url = {https://doi.org/10.1136/amiajnl-2011-000784},
eprint = {https://academic.oup.com/jamia/article-pdf/19/5/786/17374287/19-5-786.pdf},
}
"""
_DESCRIPTION = """\
The i2b2/VA corpus contained de-identified discharge summaries from Beth Israel
Deaconess Medical Center, Partners Healthcare, and University of Pittsburgh Medical
Center (UPMC). In addition, UPMC contributed de-identified progress notes to the
i2b2/VA corpus. This dataset contains the records from Beth Israel and Partners.
The i2b2/VA corpus contained five concept categories: problem, person, pronoun,
test, and treatment. Each record in the i2b2/VA corpus was annotated by two
independent annotators for coreference pairs. Then the pairs were post-processed
in order to create coreference chains. These chains were presented to an adjudicator,
who resolved the disagreements between the original annotations, and added or deleted
annotations as necessary. The outputs of the adjudicators were then re-adjudicated, with
particular attention being paid to duplicates and enforcing consistency in the annotations.
"""
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
_LICENSE = 'Data User Agreement'
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
_SUPPORTED_TASKS = [Tasks.COREFERENCE_RESOLUTION]
def _read_tar_gz(file_path, samples=None):
if samples is None:
samples = defaultdict(dict)
with tarfile.open(file_path, "r:gz") as tf:
for member in tf.getmembers():
base, filename = os.path.split(member.name)
_, ext = os.path.splitext(filename)
ext = ext[1:] # get rid of dot
sample_id = filename.split(".")[0]
if ext in ["txt", "con", "pairs", "chains"]:
samples[sample_id][f"{ext}_source"] = (
os.path.basename(file_path) + "|" + member.name
)
with tf.extractfile(member) as fp:
content_bytes = fp.read()
content = content_bytes.decode("utf-8")
samples[sample_id][ext] = content
return samples
def _read_zip(file_path, samples=None):
if samples is None:
samples = defaultdict(dict)
with zipfile.ZipFile(file_path) as zf:
for info in zf.infolist():
base, filename = os.path.split(info.filename)
_, ext = os.path.splitext(filename)
ext = ext[1:] # get rid of dot
sample_id = filename.split(".")[0]
if ext in ["txt", "con", "pairs", "chains"] and not filename.startswith(
"."
):
samples[sample_id][f"{ext}_source"] = (
os.path.basename(file_path) + "|" + info.filename
)
content = zf.read(info).decode("utf-8")
samples[sample_id][ext] = content
return samples
C_PATTERN = r"c=\"(.+?)\" (\d+):(\d+) (\d+):(\d+)"
T_PATTERN = r"t=\"(.+?)\""
def _ct_match_to_dict(c_match: Match, t_match: Match) -> dict:
"""Return a dictionary with groups from concept and type regex matches."""
return {
"text": c_match.group(1),
"start_line": int(c_match.group(2)),
"start_token": int(c_match.group(3)),
"end_line": int(c_match.group(4)),
"end_token": int(c_match.group(5)),
"type": t_match.group(1),
}
def _parse_con_line(line: str) -> dict:
"""Parse one line from a *.con file.
A typical line has the form,
'c="angie cm johnson , m.d." 13:2 13:6||t="person"
This represents one concept to be placed into a coreference group.
It can be interpreted as follows,
'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||t="<type>"'
"""
c_part, t_part = line.split("||")
c_match, t_match = re.match(C_PATTERN, c_part), re.match(T_PATTERN, t_part)
return _ct_match_to_dict(c_match, t_match)
def _parse_chains_line(line: str) -> List[Dict]:
"""Parse one line from a *.chains file.
A typical line has a chain of concepts and then a type.
'c="patient" 12:0 12:0||c="mr. andersen" 19:0 19:1||...||t="coref person"'
"""
pieces = line.split("||")
c_parts, t_part = pieces[:-1], pieces[-1]
c_matches, t_match = (
[re.match(C_PATTERN, c_part) for c_part in c_parts],
re.match(T_PATTERN, t_part),
)
return [_ct_match_to_dict(c_match, t_match) for c_match in c_matches]
def _tokoff_from_line(text: str) -> List[Tuple[int, int]]:
"""Produce character offsets for each token (whitespace split)
For example,
text = " one two three ."
tokoff = [(1,4), (6,9), (10,15), (16,17)]
"""
tokoff = []
start = None
end = None
for ii, char in enumerate(text):
if char != " " and start is None:
start = ii
if char == " " and start is not None:
end = ii
tokoff.append((start, end))
start = None
if start is not None:
end = ii + 1
tokoff.append((start, end))
return tokoff
def _form_entity_id(sample_id, split, start_line, start_token, end_line, end_token):
return "{}-entity-{}-{}-{}-{}-{}".format(
sample_id,
split,
start_line,
start_token,
end_line,
end_token,
)
def _get_corefs_from_sample(sample_id, sample, sample_entity_ids, split):
"""Parse the lines of a *.chains file into coreference objects
A small number of concepts from the *.con files could not be
aligned with the text and were excluded. For this reason we
pass in the full set of matched entity IDs and ensure that
no coreference refers to an exlcluded entity.
"""
chains_lines = sample["chains"].splitlines()
chains_parsed = [_parse_chains_line(line) for line in chains_lines]
corefs = []
for ii_cp, cp in enumerate(chains_parsed):
coref_id = f"{sample_id}-coref-{ii_cp}"
coref_entity_ids = [
_form_entity_id(
sample_id,
split,
entity["start_line"],
entity["start_token"],
entity["end_line"],
entity["end_token"],
)
for entity in cp
]
coref_entity_ids = [
ent_id for ent_id in coref_entity_ids if ent_id in sample_entity_ids
]
coref = {
"id": coref_id,
"entity_ids": coref_entity_ids,
}
corefs.append(coref)
return corefs
def _get_entities_from_sample(sample_id, sample, split):
"""Parse the lines of a *.con concept file into entity objects
Here we parse the *.con files and form entities. For a small
number of entities the text snippet in the concept file could not
be aligned with the slice from the full text produced by using
the line and token offsets. These entities are excluded from the
entities object and the coreferences object.
"""
con_lines = sample["con"].splitlines()
text = sample["txt"]
text_lines = text.splitlines()
text_line_lengths = [len(el) for el in text_lines]
# parsed concepts (sort is just a convenience)
con_parsed = sorted(
[_parse_con_line(line) for line in con_lines],
key=lambda x: (x["start_line"], x["start_token"]),
)
entities = []
for ii_cp, cp in enumerate(con_parsed):
# annotations can span multiple lines
# we loop over all lines and build up the character offsets
for ii_line in range(cp["start_line"], cp["end_line"] + 1):
# character offset to the beginning of the line
# line length of each line + 1 new line character for each line
start_line_off = sum(text_line_lengths[: ii_line - 1]) + (ii_line - 1)
# offsets for each token relative to the beginning of the line
# "one two" -> [(0,3), (4,6)]
tokoff = _tokoff_from_line(text_lines[ii_line - 1])
# if this is a single line annotation
if ii_line == cp["start_line"] == cp["end_line"]:
start_off = start_line_off + tokoff[cp["start_token"]][0]
end_off = start_line_off + tokoff[cp["end_token"]][1]
# if multi-line and on first line
# end_off gets a +1 for new line character
elif (ii_line == cp["start_line"]) and (ii_line != cp["end_line"]):
start_off = start_line_off + tokoff[cp["start_token"]][0]
end_off = start_line_off + text_line_lengths[ii_line - 1] + 1
# if multi-line and on last line
elif (ii_line != cp["start_line"]) and (ii_line == cp["end_line"]):
end_off = end_off + tokoff[cp["end_token"]][1]
# if mult-line and not on first or last line
# (this does not seem to occur in this corpus)
else:
end_off += text_line_lengths[ii_line - 1] + 1
text_slice = text[start_off:end_off]
text_slice_norm_1 = text_slice.replace("\n", "").lower()
text_slice_norm_2 = text_slice.replace("\n", " ").lower()
match = text_slice_norm_1 == cp["text"] or text_slice_norm_2 == cp["text"]
if not match:
continue
entity_id = _form_entity_id(
sample_id,
split,
cp["start_line"],
cp["start_token"],
cp["end_line"],
cp["end_token"],
)
entity = {
"id": entity_id,
"offsets": [(start_off, end_off)],
# this is the difference between taking text from the entity
# or taking the text from the offsets. the differences are
# almost all casing with some small number of new line characters
# making up the rest
# "text": [cp["text"]],
"text": [text_slice],
"type": cp["type"],
"normalized": [],
}
entities.append(entity)
# IDs are constructed such that duplicate IDs indicate duplicate (i.e. redundant) entities
# In practive this removes one duplicate sample from the test set
# {
# 'id': 'clinical-627-entity-test-122-9-122-9',
# 'offsets': [(5600, 5603)],
# 'text': ['her'],
# 'type': 'person'
# }
dedupe_entities = []
dedupe_entity_ids = set()
for entity in entities:
if entity["id"] in dedupe_entity_ids:
continue
else:
dedupe_entity_ids.add(entity["id"])
dedupe_entities.append(entity)
return dedupe_entities
class N2C22011CorefDataset(datasets.GeneratorBasedBuilder):
"""n2c2 2011 coreference task"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="n2c2_2011_source",
version=SOURCE_VERSION,
description="n2c2_2011 source schema",
schema="source",
subset_id="n2c2_2011",
),
BigBioConfig(
name="n2c2_2011_bigbio_kb",
version=BIGBIO_VERSION,
description="n2c2_2011 BigBio schema",
schema="bigbio_kb",
subset_id="n2c2_2011",
),
]
DEFAULT_CONFIG_NAME = "n2c2_2011_source"
def _info(self):
if self.config.schema == "source":
features = Features(
{
"sample_id": Value("string"),
"txt": Value("string"),
"con": Value("string"),
"pairs": Value("string"),
"chains": Value("string"),
"metadata": {
"txt_source": Value("string"),
"con_source": Value("string"),
"pairs_source": Value("string"),
"chains_source": Value("string"),
},
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
"data_dir": data_dir,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split": "test",
"data_dir": data_dir,
},
),
]
@staticmethod
def _get_source_sample(sample_id, sample):
return {
"sample_id": sample_id,
"txt": sample.get("txt", ""),
"con": sample.get("con", ""),
"pairs": sample.get("pairs", ""),
"chains": sample.get("chains", ""),
"metadata": {
"txt_source": sample.get("txt_source", ""),
"con_source": sample.get("con_source", ""),
"pairs_source": sample.get("pairs_source", ""),
"chains_source": sample.get("chains_source", ""),
},
}
@staticmethod
def _get_coref_sample(sample_id, sample, split):
passage_text = sample.get("txt", "")
entities = _get_entities_from_sample(sample_id, sample, split)
entity_ids = set([entity["id"] for entity in entities])
coreferences = _get_corefs_from_sample(sample_id, sample, entity_ids, split)
return {
"id": sample_id,
"document_id": sample_id,
"passages": [
{
"id": f"{sample_id}-passage-0",
"type": "discharge summary",
"text": [passage_text],
"offsets": [(0, len(passage_text))],
}
],
"entities": entities,
"relations": [],
"events": [],
"coreferences": coreferences,
}
def _generate_examples(self, split, data_dir):
"""Generate samples using the info passed in from _split_generators."""
if split == "train":
_id = 0
# These files have complete sample info
# (so we get a fresh `samples` defaultdict from each)
paths = [
os.path.join(data_dir, "i2b2_Beth_Train_Release.tar.gz"),
os.path.join(data_dir, "i2b2_Partners_Train_Release.tar.gz"),
]
for path in paths:
samples = _read_tar_gz(path)
for sample_id, sample in samples.items():
if self.config.schema == "source":
yield _id, self._get_source_sample(sample_id, sample)
elif self.config.schema == "bigbio_kb":
yield _id, self._get_coref_sample(sample_id, sample, split)
_id += 1
elif split == "test":
_id = 0
# Information from these files has to be combined to create a full sample
# (so we pass the `samples` defaultdict back to the `_read_zip` method)
paths = [
os.path.join(data_dir, "Task_1C.zip"),
os.path.join(data_dir, "Task_1C_Test_groundtruth.zip"),
]
samples = defaultdict(dict)
for path in paths:
samples = _read_zip(path, samples=samples)
for sample_id, sample in samples.items():
if self.config.schema == "source":
yield _id, self._get_source_sample(sample_id, sample)
elif self.config.schema == "bigbio_kb":
yield _id, self._get_coref_sample(sample_id, sample, split)
_id += 1