forked from vernontoh/mediRAG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_pipeline.py
160 lines (135 loc) · 5.03 KB
/
final_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import gc
import torch
import numpy as np
from prompts import *
from utils import *
from config import HF_TOKEN
import evaluate
import json
import time
from tqdm import tqdm
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from langchain import hub
from langchain.docstore.document import Document
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.chains import LLMChain
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.llms import HuggingFaceHub
from FlagEmbedding import FlagReranker
from langchain.retrievers import EnsembleRetriever
model_name= 'mistralai/Mistral-7B-Instruct-v0.1'
# load tokeniser
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="models")
# Quantization Config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
# Loading Model
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
cache_dir="models",
# device_map = "auto"
)
#load_data
dataset = load_dataset("bigbio/pubmed_qa", cache_dir="data")
data = list(preprocess(dataset))
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN
# loading best Retriever
repo_id = "google/flan-t5-xxl"
llm = HuggingFaceHub(
repo_id=repo_id, model_kwargs={"temperature": 0.1, "max_length": 64}
)
embedding_model1 = "pritamdeka/S-PubMedBert-MS-MARCO"
embedding_model2 = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device':'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings1 = HuggingFaceEmbeddings(
model_name=embedding_model1,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
cache_folder="models"
)
if os.path.exists(f"index/pubmedqa_{embedding_model1.split('/')[-1]}_cs{1024}_co{128}"):
print("Loading existing FAISS index...")
db_pubmed = FAISS.load_local(f"index/pubmedqa_{embedding_model1.split('/')[-1]}_cs{1024}_co{128}", embeddings1)
else:
print("Creating FAISS index...")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
docs = text_splitter.split_documents(data)
db_pubmed = FAISS.from_documents(docs, embeddings1)
db_pubmed.save_local(f"index/pubmedqa_{embedding_model1.split('/')[-1]}_cs{1024}_co{128}")
embeddings2 = HuggingFaceEmbeddings(
model_name=embedding_model2,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
cache_folder="models"
)
if os.path.exists(f"index/pubmedqa_{embedding_model2.split('/')[-1]}_cs{1024}_co{128}"):
print("Loading existing FAISS index...")
db_bge = FAISS.load_local(f"index/pubmedqa_{embedding_model2.split('/')[-1]}_cs{1024}_co{128}", embeddings2)
else:
print("Creating FAISS index...")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
docs = text_splitter.split_documents(data)
db_bge = FAISS.from_documents(docs, embeddings2)
db_bge.save_local(f"index/pubmedqa_{embedding_model2.split('/')[-1]}_cs{1024}_co{128}")
pubmed_retriever = db_pubmed.as_retriever(search_kwargs={"k": 10})
bge_retriever = db_bge.as_retriever(search_kwargs={"k": 10})
# Initialising Retriever
ensemble_retriever = EnsembleRetriever(
retrievers=[pubmed_retriever, bge_retriever], weights=[0.75,0.25]
)
reranker = FlagReranker('BAAI/bge-reranker-large')
def retriever(question):
expanded_question = query_expansion(llm, question, type="prompt")
retrieved_docs = ensemble_retriever.get_relevant_documents(expanded_question)
retrieved_docs = retrieved_docs[:15]
retrieved_docs = rerank_topk(reranker, question, retrieved_docs)
retrieved_docs = retrieved_docs[:5]
return retrieved_docs
# Building Pipeline
text_generation_pipeline = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
max_new_tokens=300,
do_sample=False,
)
mistral_llm = HuggingFacePipeline(pipeline=text_generation_pipeline)
prompt = PromptTemplate(
input_variables=["context", "question"],
template= prompt_templates['retrieval']['cot'],
)
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| mistral_llm
| StrOutputParser()
)
def QA(question):
result = chain.invoke(question)
result = find_citations([result], db_bge)[0]
return result
if __name__ == "__main__":
print("#"*20)
while True:
question = input("Enter a Biomedical Question:")
if question == 'x':
break
try:
Answer = QA(question)
print(f"Answer: {Answer}")
except Exception as error:
print(error)