From 1e102bcf8ec3c2fdd139f44066dd8ae059c5b44a Mon Sep 17 00:00:00 2001
From: Shaolei Ren <74640564+shaoleiren@users.noreply.github.com>
Date: Thu, 12 Sep 2024 12:45:08 -0700
Subject: [PATCH] Update about.md
---
_pages/about.md | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/_pages/about.md b/_pages/about.md
index aca0423..2d3d8bc 100644
--- a/_pages/about.md
+++ b/_pages/about.md
@@ -28,11 +28,11 @@ and safeguarding
AI for equitable and robust deployment in high-stakes environments. Towards this goal, I study both algorithmic foundations and empirical methodologies, centered on:
-- **Sustainable AI:** Developing principled methodologies to measure and minimize AI's resource usage and lifecyle environmental footprint (**[Communications of the ACM](https://arxiv.org/abs/2304.03271), [e-Energy'24a](https://arxiv.org/abs/2405.17469), [e-Energy'24b](https://arxiv.org/abs/2311.03615), [ASPLOS'24](https://dl.acm.org/doi/abs/10.1145/3620665.3640374), [SIGMETRICS'22a](https://arxiv.org/abs/2111.01203), [OECD AI (perspective article)](https://oecd.ai/en/wonk/how-much-water-does-ai-consume)**)
+- **Sustainable AI:** Developing principled methodologies to measure and minimize AI's resource usage and lifecycle environmental footprint (**[Communications of the ACM](https://arxiv.org/abs/2304.03271), [e-Energy'24a](https://arxiv.org/abs/2405.17469), [e-Energy'24b](https://arxiv.org/abs/2311.03615), [ASPLOS'24](https://dl.acm.org/doi/abs/10.1145/3620665.3640374), [SIGMETRICS'22a](https://arxiv.org/abs/2111.01203), [OECD AI (perspective article)](https://oecd.ai/en/wonk/how-much-water-does-ai-consume)**)
-- **Safe decision-making:** Robustifying machine learning predictions in highly dyanmic, uncertain, and/or adversarial environments such as renewable-powered computing systems (**[SIGEMETRICS'24](https://arxiv.org/abs/2401.04340), [NeurIPS'23a](https://arxiv.org/abs/2311.01568), [NeurIPS'23b](https://arxiv.org/abs/2310.20098), [ICML'23](https://arxiv.org/abs/2306.00172), [ICLR'24](https://openreview.net/pdf?id=e2YOVTenU9), [SIGMETRICS'22b](https://arxiv.org/abs/2204.08572)**)
+- **Safe decision-making:** Robustifying machine learning predictions in highly dynamic, uncertain, and/or adversarial environments such as renewable-powered computing systems (**[SIGEMETRICS'24](https://arxiv.org/abs/2401.04340), [NeurIPS'23a](https://arxiv.org/abs/2311.01568), [NeurIPS'23b](https://arxiv.org/abs/2310.20098), [ICML'23](https://arxiv.org/abs/2306.00172), [ICLR'24](https://openreview.net/pdf?id=e2YOVTenU9), [SIGMETRICS'22b](https://arxiv.org/abs/2204.08572)**)
-- **Algorithmic fairness:** Building equitable AI to tackle societal challenges such as sustainability and climage change (**[ICML'24](https://arxiv.org/abs/2406.02790), [e-Energy'24c](https://arxiv.org/abs/2307.05494), [Harvard Business Review (perspective article)](https://hbr.org/2024/07/the-uneven-distribution-of-ais-environmental-impacts)**)
+- **Algorithmic fairness:** Building equitable AI to tackle societal challenges such as public healthy equity and climate change (**[ICML'24](https://arxiv.org/abs/2406.02790), [e-Energy'24c](https://arxiv.org/abs/2307.05494), [Harvard Business Review (perspective article)](https://hbr.org/2024/07/the-uneven-distribution-of-ais-environmental-impacts)**)