-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_words.py
162 lines (117 loc) · 4.71 KB
/
get_words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import pyaudio
import wave
import numpy as np
import math
from pydub import AudioSegment
from pydub.silence import split_on_silence
from import_words import getNumberOfFiles, getNumberOfSentences, importAllFromDir, plotAll
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 44100
p = pyaudio.PyAudio()
RECORD_SECONDS = 10
minimumWordSize = 300 # if the size of the word is <= this, reject the chunk
maximumWordSize = 2000
def startRecording(seconds = RECORD_SECONDS):
frames = []
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
print("* recording")
for i in range(0, int(RATE / CHUNK * seconds)):
data = stream.read(CHUNK)
frames.append(data)
print("* done recording")
stream.stop_stream()
stream.close()
# commented below code to prevent "cannot find default device error" when opened multiple times
# p.terminate()
return frames
def detectnoiselevel(): # in dBFS
print ("detecting noise level...")
print ("recording for 5 seconds")
frames = startRecording(5)
storeWavFile(frames, './noise/noisetest.wav')
data , _ = importAllFromDir('./noise')
print (data.shape)
data = data[:,1000:]
print (20*math.log10(np.mean(data)/32767))
def storeWavFile(frames, filename, verbosity = True):
print (filename) if verbosity else 0
waveFile = wave.open(filename, 'wb')
waveFile.setnchannels(CHANNELS)
waveFile.setsampwidth(p.get_sample_size(FORMAT))
waveFile.setframerate(RATE)
waveFile.writeframes(b''.join(frames))
waveFile.close()
# print ("Done recording, stored in output.wav") if verbosity else 0
def splitWavFileAndStore(filename, minsillen= 100, silthresh = -60):
line = AudioSegment.from_wav(filename)
audio_chunks = split_on_silence(line, min_silence_len=minsillen, silence_thresh=silthresh) # isolation of words is done here
rejectedOffset = 0
for i, chunk in enumerate(audio_chunks): # audio_chunks is a python list
if(checkChunk(chunk,i, minimumWordSize, maximumWordSize)): #
rejectedOffset = rejectedOffset + 1
continue
out_file = DEFAULT_CHUNKNAME.format(i-rejectedOffset+fileOffset)
print("size of chunk{}: {} ".format(i-rejectedOffset+fileOffset, len(chunk)))
print ("exporting", out_file)
chunk.export(out_file, format="wav")
print("done exporting...")
temp = i
print("Total number of files:", temp+1)
return temp+1
def checkChunk(chunk,i, minimumWordSize=minimumWordSize, maximumWordSize=maximumWordSize): # check if the chunk is valid or not, according to size of chunk.
# (len(chunk) <= minimumWordSize) or (len(chunk) > maximumWordSize and askUser() == 0)
if( (len(chunk) > maximumWordSize)):
print("rejected chunk{}".format(i))
print ("too long")
if((len(chunk) <= minimumWordSize )):
print("rejected chunk{}".format(i))
print ("too short")
return ((len(chunk) <= minimumWordSize ) or (len(chunk) > maximumWordSize))
def askUser():
choice = input("Press 1 for LL sentence input, Press 0 for Non LL sentence input. ")
global RECORD_SECONDS
RECORD_SECONDS = input("How many seconds do you want to record for? ")
if choice == 0:
print("You are recording Non LL sentences...")
global WAVE_OUTPUT_FILENAME
global DEFAULT_CHUNKNAME
global minimumWordSize
global fileOffset
global sentenceOffset
global silence_thresh
global min_silence_len
min_silence_len = 20
sentenceOffset = getNumberOfFiles("../nonLL-sentences")
fileOffset = getNumberOfFiles("../nonLL_chunks")
WAVE_OUTPUT_FILENAME = "../nonLL-sentences/output" + str(sentenceOffset) + ".wav"
DEFAULT_CHUNKNAME = "../nonLL_chunks/chunk{}.wav"
minimumWordSize = 300
print (fileOffset)
else:
print (fileOffset)
print("You are recording LL sentences...")
return choice
if __name__ == '__main__':
# fileOffset = getNumberOfFiles() # makes sure that old chunks are not re-written
# sentenceOffset = getNumberOfSentences() # makes sure that old sentences are not re-written
# WAVE_OUTPUT_FILENAME = "../LL-sentences/sample" + str(sentenceOffset) + ".wav"
# DEFAULT_CHUNKNAME = "../LL_chunks/chunk{}.wav"
#
#
#
# # min_silence_len = 30 # default for LL
# # silence_thresh = -60 # default for LL
#
#
#
# askUser()
# frames = startRecording(RECORD_SECONDS) # get frames from user
# storeWavFile(frames, WAVE_OUTPUT_FILENAME)
# splitWavFileAndStore(WAVE_OUTPUT_FILENAME)
detectnoiselevel()