-
Notifications
You must be signed in to change notification settings - Fork 156
/
Copy pathinfer.py
161 lines (129 loc) · 5.7 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import glob
import os
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
import model_io
import utils
from models import UnetAdaptiveBins
def _is_pil_image(img):
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
class ToTensor(object):
def __init__(self):
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def __call__(self, image, target_size=(640, 480)):
# image = image.resize(target_size)
image = self.to_tensor(image)
image = self.normalize(image)
return image
def to_tensor(self, pic):
if not (_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError(
'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1)))
return img
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float()
else:
return img
class InferenceHelper:
def __init__(self, dataset='nyu', device='cuda:0'):
self.toTensor = ToTensor()
self.device = device
if dataset == 'nyu':
self.min_depth = 1e-3
self.max_depth = 10
self.saving_factor = 1000 # used to save in 16 bit
model = UnetAdaptiveBins.build(n_bins=256, min_val=self.min_depth, max_val=self.max_depth)
pretrained_path = "./pretrained/AdaBins_nyu.pt"
elif dataset == 'kitti':
self.min_depth = 1e-3
self.max_depth = 80
self.saving_factor = 256
model = UnetAdaptiveBins.build(n_bins=256, min_val=self.min_depth, max_val=self.max_depth)
pretrained_path = "./pretrained/AdaBins_kitti.pt"
else:
raise ValueError("dataset can be either 'nyu' or 'kitti' but got {}".format(dataset))
model, _, _ = model_io.load_checkpoint(pretrained_path, model)
model.eval()
self.model = model.to(self.device)
@torch.no_grad()
def predict_pil(self, pil_image, visualized=False):
# pil_image = pil_image.resize((640, 480))
img = np.asarray(pil_image) / 255.
img = self.toTensor(img).unsqueeze(0).float().to(self.device)
bin_centers, pred = self.predict(img)
if visualized:
viz = utils.colorize(torch.from_numpy(pred).unsqueeze(0), vmin=None, vmax=None, cmap='magma')
# pred = np.asarray(pred*1000, dtype='uint16')
viz = Image.fromarray(viz)
return bin_centers, pred, viz
return bin_centers, pred
@torch.no_grad()
def predict(self, image):
bins, pred = self.model(image)
pred = np.clip(pred.cpu().numpy(), self.min_depth, self.max_depth)
# Flip
image = torch.Tensor(np.array(image.cpu().numpy())[..., ::-1].copy()).to(self.device)
pred_lr = self.model(image)[-1]
pred_lr = np.clip(pred_lr.cpu().numpy()[..., ::-1], self.min_depth, self.max_depth)
# Take average of original and mirror
final = 0.5 * (pred + pred_lr)
final = nn.functional.interpolate(torch.Tensor(final), image.shape[-2:],
mode='bilinear', align_corners=True).cpu().numpy()
final[final < self.min_depth] = self.min_depth
final[final > self.max_depth] = self.max_depth
final[np.isinf(final)] = self.max_depth
final[np.isnan(final)] = self.min_depth
centers = 0.5 * (bins[:, 1:] + bins[:, :-1])
centers = centers.cpu().squeeze().numpy()
centers = centers[centers > self.min_depth]
centers = centers[centers < self.max_depth]
return centers, final
@torch.no_grad()
def predict_dir(self, test_dir, out_dir):
os.makedirs(out_dir, exist_ok=True)
transform = ToTensor()
all_files = glob.glob(os.path.join(test_dir, "*"))
self.model.eval()
for f in tqdm(all_files):
image = np.asarray(Image.open(f), dtype='float32') / 255.
image = transform(image).unsqueeze(0).to(self.device)
centers, final = self.predict(image)
# final = final.squeeze().cpu().numpy()
final = (final * self.saving_factor).astype('uint16')
basename = os.path.basename(f).split('.')[0]
save_path = os.path.join(out_dir, basename + ".png")
Image.fromarray(final.squeeze()).save(save_path)
if __name__ == '__main__':
import matplotlib.pyplot as plt
from time import time
img = Image.open("test_imgs/classroom__rgb_00283.jpg")
start = time()
inferHelper = InferenceHelper()
centers, pred = inferHelper.predict_pil(img)
print(f"took :{time() - start}s")
plt.imshow(pred.squeeze(), cmap='magma_r')
plt.show()