-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
63 lines (55 loc) · 2.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# noinspection PyUnresolvedReferences
from keras.optimizers import RMSprop
# noinspection PyUnresolvedReferences
from keras.preprocessing.image import ImageDataGenerator
import cv2
# noinspection PyUnresolvedReferences
from keras.models import Sequential
# noinspection PyUnresolvedReferences
from keras.layers import Conv2D, Input, ZeroPadding2D, BatchNormalization, Activation, MaxPooling2D, Flatten, Dense, Dropout
# noinspection PyUnresolvedReferences
from keras.models import Model, load_model
# noinspection PyUnresolvedReferences
from keras.callbacks import TensorBoard, ModelCheckpoint
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score
from sklearn.utils import shuffle
import imutils
import numpy as np
# build the neural network
model = Sequential([
Conv2D(100, (3, 3), activation='relu', input_shape=(150, 150, 3)),
MaxPooling2D(2, 2),
Conv2D(100, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Flatten(),
Dropout(0.5),
Dense(50, activation='relu'),
Dense(2, activation='softmax')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])
# Image Data Generation/Augmentation
TRAINING_DIR = "./train"
train_datagen = ImageDataGenerator(rescale=1.0/255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
train_generator = train_datagen.flow_from_directory(TRAINING_DIR,
batch_size=10,
target_size=(150, 150))
VALIDATION_DIR = "./test"
validation_datagen = ImageDataGenerator(rescale=1.0/255)
validation_generator = validation_datagen.flow_from_directory(VALIDATION_DIR,
batch_size=10,
target_size=(150, 150))
# Initialize a callback checkpoint to keep saving best model after each epoch while training
checkpoint = ModelCheckpoint('model2-{epoch:03d}.model',monitor='val_loss',verbose=0,save_best_only=True,mode='auto')
# Train the model
history = model.fit_generator(train_generator,
epochs=10,
validation_data=validation_generator,
callbacks=[checkpoint])