forked from pololu/vl53l0x-arduino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVL53L0X.cpp
1036 lines (825 loc) · 29.6 KB
/
VL53L0X.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Most of the functionality of this library is based on the VL53L0X API
// provided by ST (STSW-IMG005), and some of the explanatory comments are quoted
// or paraphrased from the API source code, API user manual (UM2039), and the
// VL53L0X datasheet.
#include <VL53L0X.h>
#include <Wire.h>
// Defines /////////////////////////////////////////////////////////////////////
// The Arduino two-wire interface uses a 7-bit number for the address,
// and sets the last bit correctly based on reads and writes
#define ADDRESS_DEFAULT 0b0101001
// Record the current time to check an upcoming timeout against
#define startTimeout() (timeout_start_ms = millis())
// Check if timeout is enabled (set to nonzero value) and has expired
#define checkTimeoutExpired() (io_timeout > 0 && ((uint16_t)millis() - timeout_start_ms) > io_timeout)
// Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs
// from register value
// based on VL53L0X_decode_vcsel_period()
#define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1)
// Encode VCSEL pulse period register value from period in PCLKs
// based on VL53L0X_encode_vcsel_period()
#define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1)
// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs
// based on VL53L0X_calc_macro_period_ps()
// PLL_period_ps = 1655; macro_period_vclks = 2304
#define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)
// Constructors ////////////////////////////////////////////////////////////////
VL53L0X::VL53L0X(void)
: address(ADDRESS_DEFAULT)
, io_timeout(0) // no timeout
, did_timeout(false)
{
}
// Public Methods //////////////////////////////////////////////////////////////
void VL53L0X::setAddress(uint8_t new_addr)
{
writeReg(I2C_SLAVE_DEVICE_ADDRESS, new_addr & 0x7F);
address = new_addr;
}
// Initialize sensor using sequence based on VL53L0X_DataInit(),
// VL53L0X_StaticInit(), and VL53L0X_PerformRefCalibration().
// This function does not perform reference SPAD calibration
// (VL53L0X_PerformRefSpadManagement()), since the API user manual says that it
// is performed by ST on the bare modules; it seems like that should work well
// enough unless a cover glass is added.
// If io_2v8 (optional) is true or not given, the sensor is configured for 2V8
// mode.
bool VL53L0X::init(bool io_2v8)
{
// VL53L0X_DataInit() begin
// sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
if (io_2v8)
{
writeReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
readReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // set bit 0
}
// "Set I2C standard mode"
writeReg(0x88, 0x00);
writeReg(0x80, 0x01);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
stop_variable = readReg(0x91);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
// disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks
writeReg(MSRC_CONFIG_CONTROL, readReg(MSRC_CONFIG_CONTROL) | 0x12);
// set final range signal rate limit to 0.25 MCPS (million counts per second)
setSignalRateLimit(0.25);
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xFF);
// VL53L0X_DataInit() end
// VL53L0X_StaticInit() begin
uint8_t spad_count;
bool spad_type_is_aperture;
if (!getSpadInfo(&spad_count, &spad_type_is_aperture)) { return false; }
// The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in
// the API, but the same data seems to be more easily readable from
// GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there
uint8_t ref_spad_map[6];
readMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
// -- VL53L0X_set_reference_spads() begin (assume NVM values are valid)
writeReg(0xFF, 0x01);
writeReg(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
writeReg(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
writeReg(0xFF, 0x00);
writeReg(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4);
uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad
uint8_t spads_enabled = 0;
for (uint8_t i = 0; i < 48; i++)
{
if (i < first_spad_to_enable || spads_enabled == spad_count)
{
// This bit is lower than the first one that should be enabled, or
// (reference_spad_count) bits have already been enabled, so zero this bit
ref_spad_map[i / 8] &= ~(1 << (i % 8));
}
else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1)
{
spads_enabled++;
}
}
writeMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
// -- VL53L0X_set_reference_spads() end
// -- VL53L0X_load_tuning_settings() begin
// DefaultTuningSettings from vl53l0x_tuning.h
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0xFF, 0x00);
writeReg(0x09, 0x00);
writeReg(0x10, 0x00);
writeReg(0x11, 0x00);
writeReg(0x24, 0x01);
writeReg(0x25, 0xFF);
writeReg(0x75, 0x00);
writeReg(0xFF, 0x01);
writeReg(0x4E, 0x2C);
writeReg(0x48, 0x00);
writeReg(0x30, 0x20);
writeReg(0xFF, 0x00);
writeReg(0x30, 0x09);
writeReg(0x54, 0x00);
writeReg(0x31, 0x04);
writeReg(0x32, 0x03);
writeReg(0x40, 0x83);
writeReg(0x46, 0x25);
writeReg(0x60, 0x00);
writeReg(0x27, 0x00);
writeReg(0x50, 0x06);
writeReg(0x51, 0x00);
writeReg(0x52, 0x96);
writeReg(0x56, 0x08);
writeReg(0x57, 0x30);
writeReg(0x61, 0x00);
writeReg(0x62, 0x00);
writeReg(0x64, 0x00);
writeReg(0x65, 0x00);
writeReg(0x66, 0xA0);
writeReg(0xFF, 0x01);
writeReg(0x22, 0x32);
writeReg(0x47, 0x14);
writeReg(0x49, 0xFF);
writeReg(0x4A, 0x00);
writeReg(0xFF, 0x00);
writeReg(0x7A, 0x0A);
writeReg(0x7B, 0x00);
writeReg(0x78, 0x21);
writeReg(0xFF, 0x01);
writeReg(0x23, 0x34);
writeReg(0x42, 0x00);
writeReg(0x44, 0xFF);
writeReg(0x45, 0x26);
writeReg(0x46, 0x05);
writeReg(0x40, 0x40);
writeReg(0x0E, 0x06);
writeReg(0x20, 0x1A);
writeReg(0x43, 0x40);
writeReg(0xFF, 0x00);
writeReg(0x34, 0x03);
writeReg(0x35, 0x44);
writeReg(0xFF, 0x01);
writeReg(0x31, 0x04);
writeReg(0x4B, 0x09);
writeReg(0x4C, 0x05);
writeReg(0x4D, 0x04);
writeReg(0xFF, 0x00);
writeReg(0x44, 0x00);
writeReg(0x45, 0x20);
writeReg(0x47, 0x08);
writeReg(0x48, 0x28);
writeReg(0x67, 0x00);
writeReg(0x70, 0x04);
writeReg(0x71, 0x01);
writeReg(0x72, 0xFE);
writeReg(0x76, 0x00);
writeReg(0x77, 0x00);
writeReg(0xFF, 0x01);
writeReg(0x0D, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x01);
writeReg(0x01, 0xF8);
writeReg(0xFF, 0x01);
writeReg(0x8E, 0x01);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
// -- VL53L0X_load_tuning_settings() end
// "Set interrupt config to new sample ready"
// -- VL53L0X_SetGpioConfig() begin
writeReg(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04);
writeReg(GPIO_HV_MUX_ACTIVE_HIGH, readReg(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low
writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
// -- VL53L0X_SetGpioConfig() end
measurement_timing_budget_us = getMeasurementTimingBudget();
// "Disable MSRC and TCC by default"
// MSRC = Minimum Signal Rate Check
// TCC = Target CentreCheck
// -- VL53L0X_SetSequenceStepEnable() begin
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
// -- VL53L0X_SetSequenceStepEnable() end
// "Recalculate timing budget"
setMeasurementTimingBudget(measurement_timing_budget_us);
// VL53L0X_StaticInit() end
// VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration())
// -- VL53L0X_perform_vhv_calibration() begin
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x01);
if (!performSingleRefCalibration(0x40)) { return false; }
// -- VL53L0X_perform_vhv_calibration() end
// -- VL53L0X_perform_phase_calibration() begin
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02);
if (!performSingleRefCalibration(0x00)) { return false; }
// -- VL53L0X_perform_phase_calibration() end
// "restore the previous Sequence Config"
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
// VL53L0X_PerformRefCalibration() end
return true;
}
// Write an 8-bit register
void VL53L0X::writeReg(uint8_t reg, uint8_t value)
{
Wire.beginTransmission(address);
Wire.write(reg);
Wire.write(value);
last_status = Wire.endTransmission();
}
// Write a 16-bit register
void VL53L0X::writeReg16Bit(uint8_t reg, uint16_t value)
{
Wire.beginTransmission(address);
Wire.write(reg);
Wire.write((value >> 8) & 0xFF); // value high byte
Wire.write( value & 0xFF); // value low byte
last_status = Wire.endTransmission();
}
// Write a 32-bit register
void VL53L0X::writeReg32Bit(uint8_t reg, uint32_t value)
{
Wire.beginTransmission(address);
Wire.write(reg);
Wire.write((value >> 24) & 0xFF); // value highest byte
Wire.write((value >> 16) & 0xFF);
Wire.write((value >> 8) & 0xFF);
Wire.write( value & 0xFF); // value lowest byte
last_status = Wire.endTransmission();
}
// Read an 8-bit register
uint8_t VL53L0X::readReg(uint8_t reg)
{
uint8_t value;
Wire.beginTransmission(address);
Wire.write(reg);
last_status = Wire.endTransmission();
Wire.requestFrom(address, (uint8_t)1);
value = Wire.read();
return value;
}
// Read a 16-bit register
uint16_t VL53L0X::readReg16Bit(uint8_t reg)
{
uint16_t value;
Wire.beginTransmission(address);
Wire.write(reg);
last_status = Wire.endTransmission();
Wire.requestFrom(address, (uint8_t)2);
value = (uint16_t)Wire.read() << 8; // value high byte
value |= Wire.read(); // value low byte
return value;
}
// Read a 32-bit register
uint32_t VL53L0X::readReg32Bit(uint8_t reg)
{
uint16_t value;
Wire.beginTransmission(address);
Wire.write(reg);
last_status = Wire.endTransmission();
Wire.requestFrom(address, (uint8_t)4);
value = (uint32_t)Wire.read() << 24; // value highest byte
value |= (uint32_t)Wire.read() << 16;
value |= (uint16_t)Wire.read() << 8;
value |= Wire.read(); // value lowest byte
return value;
}
// Write an arbitrary number of bytes from the given array to the sensor,
// starting at the given register
void VL53L0X::writeMulti(uint8_t reg, uint8_t const * src, uint8_t count)
{
Wire.beginTransmission(address);
Wire.write(reg);
while (count-- > 0)
{
Wire.write(*(src++));
}
last_status = Wire.endTransmission();
}
// Read an arbitrary number of bytes from the sensor, starting at the given
// register, into the given array
void VL53L0X::readMulti(uint8_t reg, uint8_t * dst, uint8_t count)
{
Wire.beginTransmission(address);
Wire.write(reg);
last_status = Wire.endTransmission();
Wire.requestFrom(address, count);
while (count-- > 0)
{
*(dst++) = Wire.read();
}
}
// Set the return signal rate limit check value in units of MCPS (mega counts
// per second). "This represents the amplitude of the signal reflected from the
// target and detected by the device"; setting this limit presumably determines
// the minimum measurement necessary for the sensor to report a valid reading.
// Setting a lower limit increases the potential range of the sensor but also
// seems to increase the likelihood of getting an inaccurate reading because of
// unwanted reflections from objects other than the intended target.
// Defaults to 0.25 MCPS as initialized by the ST API and this library.
bool VL53L0X::setSignalRateLimit(float limit_Mcps)
{
if (limit_Mcps < 0 || limit_Mcps > 511.99) { return false; }
// Q9.7 fixed point format (9 integer bits, 7 fractional bits)
writeReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7));
return true;
}
// Get the return signal rate limit check value in MCPS
float VL53L0X::getSignalRateLimit(void)
{
return (float)readReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7);
}
// Set the measurement timing budget in microseconds, which is the time allowed
// for one measurement; the ST API and this library take care of splitting the
// timing budget among the sub-steps in the ranging sequence. A longer timing
// budget allows for more accurate measurements. Increasing the budget by a
// factor of N decreases the range measurement standard deviation by a factor of
// sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms.
// based on VL53L0X_set_measurement_timing_budget_micro_seconds()
bool VL53L0X::setMeasurementTimingBudget(uint32_t budget_us)
{
SequenceStepEnables enables;
SequenceStepTimeouts timeouts;
uint16_t const StartOverhead = 1320; // note that this is different than the value in get_
uint16_t const EndOverhead = 960;
uint16_t const MsrcOverhead = 660;
uint16_t const TccOverhead = 590;
uint16_t const DssOverhead = 690;
uint16_t const PreRangeOverhead = 660;
uint16_t const FinalRangeOverhead = 550;
uint32_t const MinTimingBudget = 20000;
if (budget_us < MinTimingBudget) { return false; }
uint32_t used_budget_us = StartOverhead + EndOverhead;
getSequenceStepEnables(&enables);
getSequenceStepTimeouts(&enables, &timeouts);
if (enables.tcc)
{
used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
}
if (enables.dss)
{
used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
}
else if (enables.msrc)
{
used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
}
if (enables.pre_range)
{
used_budget_us += (timeouts.pre_range_us + PreRangeOverhead);
}
if (enables.final_range)
{
used_budget_us += FinalRangeOverhead;
// "Note that the final range timeout is determined by the timing
// budget and the sum of all other timeouts within the sequence.
// If there is no room for the final range timeout, then an error
// will be set. Otherwise the remaining time will be applied to
// the final range."
if (used_budget_us > budget_us)
{
// "Requested timeout too big."
return false;
}
uint32_t final_range_timeout_us = budget_us - used_budget_us;
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
// "For the final range timeout, the pre-range timeout
// must be added. To do this both final and pre-range
// timeouts must be expressed in macro periods MClks
// because they have different vcsel periods."
uint16_t final_range_timeout_mclks =
timeoutMicrosecondsToMclks(final_range_timeout_us,
timeouts.final_range_vcsel_period_pclks);
if (enables.pre_range)
{
final_range_timeout_mclks += timeouts.pre_range_mclks;
}
writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
encodeTimeout(final_range_timeout_mclks));
// set_sequence_step_timeout() end
measurement_timing_budget_us = budget_us; // store for internal reuse
}
return true;
}
// Get the measurement timing budget in microseconds
// based on VL53L0X_get_measurement_timing_budget_micro_seconds()
// in us
uint32_t VL53L0X::getMeasurementTimingBudget(void)
{
SequenceStepEnables enables;
SequenceStepTimeouts timeouts;
uint16_t const StartOverhead = 1910; // note that this is different than the value in set_
uint16_t const EndOverhead = 960;
uint16_t const MsrcOverhead = 660;
uint16_t const TccOverhead = 590;
uint16_t const DssOverhead = 690;
uint16_t const PreRangeOverhead = 660;
uint16_t const FinalRangeOverhead = 550;
// "Start and end overhead times always present"
uint32_t budget_us = StartOverhead + EndOverhead;
getSequenceStepEnables(&enables);
getSequenceStepTimeouts(&enables, &timeouts);
if (enables.tcc)
{
budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
}
if (enables.dss)
{
budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
}
else if (enables.msrc)
{
budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
}
if (enables.pre_range)
{
budget_us += (timeouts.pre_range_us + PreRangeOverhead);
}
if (enables.final_range)
{
budget_us += (timeouts.final_range_us + FinalRangeOverhead);
}
measurement_timing_budget_us = budget_us; // store for internal reuse
return budget_us;
}
// Set the VCSEL (vertical cavity surface emitting laser) pulse period for the
// given period type (pre-range or final range) to the given value in PCLKs.
// Longer periods seem to increase the potential range of the sensor.
// Valid values are (even numbers only):
// pre: 12 to 18 (initialized default: 14)
// final: 8 to 14 (initialized default: 10)
// based on VL53L0X_set_vcsel_pulse_period()
bool VL53L0X::setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks)
{
uint8_t vcsel_period_reg = encodeVcselPeriod(period_pclks);
SequenceStepEnables enables;
SequenceStepTimeouts timeouts;
getSequenceStepEnables(&enables);
getSequenceStepTimeouts(&enables, &timeouts);
// "Apply specific settings for the requested clock period"
// "Re-calculate and apply timeouts, in macro periods"
// "When the VCSEL period for the pre or final range is changed,
// the corresponding timeout must be read from the device using
// the current VCSEL period, then the new VCSEL period can be
// applied. The timeout then must be written back to the device
// using the new VCSEL period.
//
// For the MSRC timeout, the same applies - this timeout being
// dependant on the pre-range vcsel period."
if (type == VcselPeriodPreRange)
{
// "Set phase check limits"
switch (period_pclks)
{
case 12:
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18);
break;
case 14:
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30);
break;
case 16:
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40);
break;
case 18:
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50);
break;
default:
// invalid period
return false;
}
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
// apply new VCSEL period
writeReg(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
// update timeouts
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE)
uint16_t new_pre_range_timeout_mclks =
timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks);
writeReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
encodeTimeout(new_pre_range_timeout_mclks));
// set_sequence_step_timeout() end
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)
uint16_t new_msrc_timeout_mclks =
timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks);
writeReg(MSRC_CONFIG_TIMEOUT_MACROP,
(new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1));
// set_sequence_step_timeout() end
}
else if (type == VcselPeriodFinalRange)
{
switch (period_pclks)
{
case 8:
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10);
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
writeReg(0xFF, 0x01);
writeReg(ALGO_PHASECAL_LIM, 0x30);
writeReg(0xFF, 0x00);
break;
case 10:
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28);
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
writeReg(0xFF, 0x01);
writeReg(ALGO_PHASECAL_LIM, 0x20);
writeReg(0xFF, 0x00);
break;
case 12:
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
writeReg(0xFF, 0x01);
writeReg(ALGO_PHASECAL_LIM, 0x20);
writeReg(0xFF, 0x00);
break;
case 14:
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48);
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
writeReg(0xFF, 0x01);
writeReg(ALGO_PHASECAL_LIM, 0x20);
writeReg(0xFF, 0x00);
break;
default:
// invalid period
return false;
}
// apply new VCSEL period
writeReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
// update timeouts
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
// "For the final range timeout, the pre-range timeout
// must be added. To do this both final and pre-range
// timeouts must be expressed in macro periods MClks
// because they have different vcsel periods."
uint16_t new_final_range_timeout_mclks =
timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks);
if (enables.pre_range)
{
new_final_range_timeout_mclks += timeouts.pre_range_mclks;
}
writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
encodeTimeout(new_final_range_timeout_mclks));
// set_sequence_step_timeout end
}
else
{
// invalid type
return false;
}
// "Finally, the timing budget must be re-applied"
setMeasurementTimingBudget(measurement_timing_budget_us);
// "Perform the phase calibration. This is needed after changing on vcsel period."
// VL53L0X_perform_phase_calibration() begin
uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG);
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02);
performSingleRefCalibration(0x0);
writeReg(SYSTEM_SEQUENCE_CONFIG, sequence_config);
// VL53L0X_perform_phase_calibration() end
return true;
}
// Get the VCSEL pulse period in PCLKs for the given period type.
// based on VL53L0X_get_vcsel_pulse_period()
uint8_t VL53L0X::getVcselPulsePeriod(vcselPeriodType type)
{
if (type == VcselPeriodPreRange)
{
return decodeVcselPeriod(readReg(PRE_RANGE_CONFIG_VCSEL_PERIOD));
}
else if (type == VcselPeriodFinalRange)
{
return decodeVcselPeriod(readReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD));
}
else { return 255; }
}
// Start continuous ranging measurements. If period_ms (optional) is 0 or not
// given, continuous back-to-back mode is used (the sensor takes measurements as
// often as possible); otherwise, continuous timed mode is used, with the given
// inter-measurement period in milliseconds determining how often the sensor
// takes a measurement.
// based on VL53L0X_StartMeasurement()
void VL53L0X::startContinuous(uint32_t period_ms)
{
writeReg(0x80, 0x01);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0x91, stop_variable);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
if (period_ms != 0)
{
// continuous timed mode
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin
uint16_t osc_calibrate_val = readReg16Bit(OSC_CALIBRATE_VAL);
if (osc_calibrate_val != 0)
{
period_ms *= osc_calibrate_val;
}
writeReg32Bit(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms);
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() end
writeReg(SYSRANGE_START, 0x04); // VL53L0X_REG_SYSRANGE_MODE_TIMED
}
else
{
// continuous back-to-back mode
writeReg(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK
}
}
// Stop continuous measurements
// based on VL53L0X_StopMeasurement()
void VL53L0X::stopContinuous(void)
{
writeReg(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0x91, 0x00);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
}
// Returns a range reading in millimeters when continuous mode is active
// (readRangeSingleMillimeters() also calls this function after starting a
// single-shot range measurement)
uint16_t VL53L0X::readRangeContinuousMillimeters(void)
{
startTimeout();
while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0)
{
if (checkTimeoutExpired())
{
did_timeout = true;
return 65535;
}
}
// assumptions: Linearity Corrective Gain is 1000 (default);
// fractional ranging is not enabled
uint16_t range = readReg16Bit(RESULT_RANGE_STATUS + 10);
writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
return range;
}
// Performs a single-shot range measurement and returns the reading in
// millimeters
// based on VL53L0X_PerformSingleRangingMeasurement()
uint16_t VL53L0X::readRangeSingleMillimeters(void)
{
writeReg(0x80, 0x01);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0x91, stop_variable);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
writeReg(SYSRANGE_START, 0x01);
// "Wait until start bit has been cleared"
startTimeout();
while (readReg(SYSRANGE_START) & 0x01)
{
if (checkTimeoutExpired())
{
did_timeout = true;
return 65535;
}
}
return readRangeContinuousMillimeters();
}
// Did a timeout occur in one of the read functions since the last call to
// timeoutOccurred()?
bool VL53L0X::timeoutOccurred()
{
bool tmp = did_timeout;
did_timeout = false;
return tmp;
}
// Private Methods /////////////////////////////////////////////////////////////
// Get reference SPAD (single photon avalanche diode) count and type
// based on VL53L0X_get_info_from_device(),
// but only gets reference SPAD count and type
bool VL53L0X::getSpadInfo(uint8_t * count, bool * type_is_aperture)
{
uint8_t tmp;
writeReg(0x80, 0x01);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0xFF, 0x06);
writeReg(0x83, readReg(0x83) | 0x04);
writeReg(0xFF, 0x07);
writeReg(0x81, 0x01);
writeReg(0x80, 0x01);
writeReg(0x94, 0x6b);
writeReg(0x83, 0x00);
startTimeout();
while (readReg(0x83) == 0x00)
{
if (checkTimeoutExpired()) { return false; }
}
writeReg(0x83, 0x01);
tmp = readReg(0x92);
*count = tmp & 0x7f;
*type_is_aperture = (tmp >> 7) & 0x01;
writeReg(0x81, 0x00);
writeReg(0xFF, 0x06);
writeReg(0x83, readReg( 0x83 & ~0x04));
writeReg(0xFF, 0x01);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
return true;
}
// Get sequence step enables
// based on VL53L0X_GetSequenceStepEnables()
void VL53L0X::getSequenceStepEnables(SequenceStepEnables * enables)
{
uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG);
enables->tcc = (sequence_config >> 4) & 0x1;
enables->dss = (sequence_config >> 3) & 0x1;
enables->msrc = (sequence_config >> 2) & 0x1;
enables->pre_range = (sequence_config >> 6) & 0x1;
enables->final_range = (sequence_config >> 7) & 0x1;
}
// Get sequence step timeouts
// based on get_sequence_step_timeout(),
// but gets all timeouts instead of just the requested one, and also stores
// intermediate values
void VL53L0X::getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts)
{
timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange);
timeouts->msrc_dss_tcc_mclks = readReg(MSRC_CONFIG_TIMEOUT_MACROP) + 1;
timeouts->msrc_dss_tcc_us =
timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks,
timeouts->pre_range_vcsel_period_pclks);
timeouts->pre_range_mclks =
decodeTimeout(readReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI));
timeouts->pre_range_us =
timeoutMclksToMicroseconds(timeouts->pre_range_mclks,
timeouts->pre_range_vcsel_period_pclks);
timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange);
timeouts->final_range_mclks =
decodeTimeout(readReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI));
if (enables->pre_range)
{
timeouts->final_range_mclks -= timeouts->pre_range_mclks;
}
timeouts->final_range_us =
timeoutMclksToMicroseconds(timeouts->final_range_mclks,
timeouts->final_range_vcsel_period_pclks);
}
// Decode sequence step timeout in MCLKs from register value
// based on VL53L0X_decode_timeout()
// Note: the original function returned a uint32_t, but the return value is
// always stored in a uint16_t.
uint16_t VL53L0X::decodeTimeout(uint16_t reg_val)
{
// format: "(LSByte * 2^MSByte) + 1"
return (uint16_t)((reg_val & 0x00FF) <<
(uint16_t)((reg_val & 0xFF00) >> 8)) + 1;
}
// Encode sequence step timeout register value from timeout in MCLKs
// based on VL53L0X_encode_timeout()
// Note: the original function took a uint16_t, but the argument passed to it
// is always a uint16_t.
uint16_t VL53L0X::encodeTimeout(uint16_t timeout_mclks)
{
// format: "(LSByte * 2^MSByte) + 1"
uint32_t ls_byte = 0;
uint16_t ms_byte = 0;
if (timeout_mclks > 0)
{
ls_byte = timeout_mclks - 1;
while ((ls_byte & 0xFFFFFF00) > 0)
{
ls_byte >>= 1;
ms_byte++;
}
return (ms_byte << 8) | (ls_byte & 0xFF);
}
else { return 0; }
}