cd /project/sheynkman/projects/zhang_mouse_aging
module load gcc/11.4.0
module load mamba/22.11.1-4
module load bioconda/py3.10
module load anaconda/2023.07-py3.11
module load openmpi/4.1.4
module load python/3.11.4
module load git-lfs/2.10.0
module load apptainer/1.2.2
module load R/4.3.1
I used the following scripts in R to create these:
01.1_view_peptide_data.R
01.2_make_clean_peptide_tables.R
01.3_peptide_to_isoform_mapping.R
01.4_isoform_annotation_of_experi_peptides.R
01.5_filter_for_co_expressed_isoforms.R
I used this script:
02_ProteinDF2PoGo.R
export PATH=$PATH:/project/sheynkman/programs/PoGo_v1.2.3/Linux
PoGo -fasta ./00_ensambl_mouse/Mus_musculus.GRCm39.pep.all.fa -gtf ./00_gencode_mouse_models/gencode.vM35.basic.annotation.gtf -in ./02_Peptides2Pogo/coexpressed_isoform_peptides.txt -format BED
PoGo -fasta ./00_ensambl_mouse/Mus_musculus.GRCm39.pep.all.fa -gtf ./00_gencode_mouse_models/gencode.vM35.basic.annotation.gtf -in ./02_Peptides2Pogo/all_peptides.txt -format BED
PoGo -fasta ./00_ensambl_mouse/Mus_musculus.GRCm39.pep.all.fa -gtf ./00_gencode_mouse_models/gencode.vM35.basic.annotation.gtf -in ./02_Peptides2Pogo/sn_pq31811_peptides.txt -format BED
PoGo -fasta ./00_ensambl_mouse/Mus_musculus.GRCm39.pep.all.fa -gtf ./00_gencode_mouse_models/gencode.vM35.basic.annotation.gtf -in ./02_Peptides2Pogo/sn_pq31812_peptides.txt -format BED
PoGo -fasta ./00_ensambl_mouse/Mus_musculus.GRCm39.pep.all.fa -gtf ./00_gencode_mouse_models/gencode.vM35.basic.annotation.gtf -in ./02_Peptides2Pogo/sn_pq31813_peptides.txt -format BED
PoGo -fasta ./00_ensambl_mouse/Mus_musculus.GRCm39.pep.all.fa -gtf ./00_gencode_mouse_models/gencode.vM35.basic.annotation.gtf -in ./02_Peptides2Pogo/sn_pq31814_peptides.txt -format BED
module load perl/5.36.0
perl 00_scripts/TrackHubGenerator.pl /project/sheynkman/projects/zhang_mouse_aging/ mm39 /project/sheynkman/projects/zhang_mouse_aging/03_pogo_out/ /project/sheynkman/programs/ [email protected]
All 3 scripts apply the following steps:
- Filter for peptides with a significant (>0.05) change
- Determine "fraction gene change." 0 if no [significant] change, -1 if decreases with age, sex, etc., and 1 if increases
- Calculate average effect size if multiple peptides map to the same gene and are in the same category (constitutive & isoform-infomative; isoform-specific is always separate)
conda env create -f ./00_scripts/candidate_peps.yml
conda activate candidate_peps
This script filters for genes (across all tissue types and effect types) where more than 90% (and 80%) of the shared peptides (constitutive and isoform-informative) have no change (fraction gene change = 0) and at least one isoform-specific peptide have a change (faction gene change = -1 or 1). The file here is very large.
python ./00_scripts/04_candidate_peps_summary_reduced.py
This script filters for genes (across all tissue types but only sex effect) where the constitutive paptides have 0 fraction gene change, and the isofom-specific peptides have a change. This file is still very large.
python ./00_scripts/04_sex_subset_candidate_peps.py
This script filters for genes (across all tissue types but only age effect) where the constitutive paptides have 0 fraction gene change, and the isofom-specific peptides have a change. This file is still very large.
python ./00_scripts/04_age_subset_candidate_peps.py
Those didn't include any coexpressed isoform, so I modified the first script to only include genes with coexpressed isoforms.
python ./00_scripts/04_0.9_coexpressed.py