-
Notifications
You must be signed in to change notification settings - Fork 44
/
torchvision_modified_resnet.py
271 lines (226 loc) · 9.91 KB
/
torchvision_modified_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from typing import Callable, List, Optional, Type, Union
import torch
import torch.nn as nn
from torch import Tensor
from torchvision.utils import _log_api_usage_once
"""
This is a modified version of torchvision's code for instantiating resnets. Here's a list of the changes made to the
source code:
- All convolutional layers now have bias set to True, where they were original set to False.
- Removed the first maxpool layers so that input stays somewhat large.
- Layer conv1 in the ResNet class has kernel size set to 3 and stride set to 1, where they were originally 7 and 2,
respectively.
- Forward calls have a feature list argument to store the features of the network. This is only used for continual
backprop and doesn't affect the output of the network.
To see the source code, go to: torchvision.models.resnet (for torchvision==0.15.1)
"""
class SequentialWithKeywordArguments(torch.nn.Sequential):
"""
Sequential module that allows the use of keyword arguments in the forward pass
"""
def forward(self, input, **kwargs):
for module in self:
input = module(input, **kwargs)
return input
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding from torchvision.models.resnet but bias is set to True"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=True,
dilation=dilation,
)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=True)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor, feature_list: list = None) -> Tensor:
"""
Forward pass through the block
:param x: input to the resnet block
:param feature_list: list to store the features of the network
:return: output of the block
"""
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
if feature_list is not None: feature_list.append(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
if feature_list is not None: feature_list.append(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block: Type[Union[BasicBlock]],
layers: List[int],
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
_log_api_usage_once(self)
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element tuple, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=True)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.output_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, BasicBlock) and m.bn2.weight is not None:
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
def _make_layer(
self,
block: Type[Union[BasicBlock]],
planes: int,
blocks: int,
stride: int = 1,
dilate: bool = False,
) -> SequentialWithKeywordArguments:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = SequentialWithKeywordArguments(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
return SequentialWithKeywordArguments(*layers)
def _forward_impl(self, x: Tensor, feature_list: list = None) -> Tensor:
"""
Forward pass for a resnet
:param x: input to the network
:param feature_list: optional list for storing the features of the network
:return: output of the network
"""
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
if feature_list is not None: feature_list.append(x)
x = self.layer1(x, feature_list=feature_list)
x = self.layer2(x, feature_list=feature_list)
x = self.layer3(x, feature_list=feature_list)
x = self.layer4(x, feature_list=feature_list)
if feature_list is not None: feature_list.pop(-1)
x = self.output_pool(x)
x = torch.flatten(x, 1)
if feature_list is not None: feature_list.append(x)
x = self.fc(x)
return x
def forward(self, x: Tensor, feature_list: list = None) -> Tensor:
return self._forward_impl(x, feature_list)
def build_resnet18(num_classes: int, norm_layer):
"""
:param num_classes: number of classes for the classification problem
:param norm_layer: type of normalization. Options: [torch.nn.BatchNorm2d, torch.nn.Identity]
:return: an instance of ResNet with the correct number of layers for ResNet34
"""
return ResNet(BasicBlock, layers=[2, 2, 2, 2], norm_layer=norm_layer, num_classes=num_classes)
def kaiming_init_resnet_module(nn_module: torch.nn.Module):
"""
Initializes the parameters of a resnet module in the following way:
- Conv2d: weights are initialized using xavier normal initialization and bias are initialized to zero
- Linear: same as Conv2d
- BatchNorm2d: bias are initialized to 0, weights are initialized to 1
:param nn_module: an instance ot torch.nn.Module to be initialized
"""
if isinstance(nn_module, torch.nn.Conv2d) or isinstance(nn_module, torch.nn.Linear):
if isinstance(nn_module, torch.nn.Conv2d):
torch.nn.init.kaiming_normal_(nn_module.weight, nonlinearity="relu")
else: # the only linear layer in a resnet is the output layer
torch.nn.init.kaiming_normal_(nn_module.weight, nonlinearity="linear")
if nn_module.bias is not None:
torch.nn.init.constant_(nn_module.bias, 0.0)
if isinstance(nn_module, torch.nn.BatchNorm2d):
torch.nn.init.constant_(nn_module.weight, 1.0)
torch.nn.init.constant_(nn_module.bias, 0.0)