From 83a1a6f5621872c438312c7ff685a1a9adb83b64 Mon Sep 17 00:00:00 2001 From: jcohenadad Date: Tue, 9 Jan 2024 22:58:22 -0500 Subject: [PATCH] Added stats --- data_processing.ipynb | 54 +++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 52 insertions(+), 2 deletions(-) diff --git a/data_processing.ipynb b/data_processing.ipynb index 2ffc250..69f8608 100644 --- a/data_processing.ipynb +++ b/data_processing.ipynb @@ -89,7 +89,9 @@ "import nibabel as nib\n", "import pandas as pd\n", "from scipy.interpolate import interp1d\n", - "from scipy.ndimage import uniform_filter1d" + "from scipy.ndimage import uniform_filter1d\n", + "from scipy.stats import f_oneway\n", + "from statsmodels.stats.multicomp import pairwise_tukeyhsd" ] }, { @@ -325,7 +327,8 @@ "source": [ "# Make figure of B1+ values along the spinal cord across shim methods\n", "\n", - "plt.rcParams['font.family'] = 'Arial'\n", + "# Go back to root data folder\n", + "os.chdir(os.path.join(path_data))\n", "\n", "def smooth_data(data, window_size=20):\n", " \"\"\" Apply a simple moving average to smooth the data. \"\"\"\n", @@ -406,6 +409,53 @@ "plt.tight_layout()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a66be786", + "metadata": {}, + "outputs": [], + "source": [ + "# Create tables and perform statistics\n", + "\n", + "# Go back to root data folder\n", + "os.chdir(os.path.join(path_data))\n", + "\n", + "# Data storage\n", + "data_summary = []\n", + "\n", + "# Compute mean and SD of B1+ for each subject and each shim mode\n", + "for subject in subjects:\n", + " for shim_mode in shim_modes:\n", + " all_data = []\n", + " for file_path in glob.glob(os.path.join(path_data, subject, \"fmap\", f\"TB1map_*{shim_mode}*.csv\")):\n", + " df = pd.read_csv(file_path)\n", + " wa_data = df['WA()']\n", + " all_data.extend(wa_data)\n", + "\n", + " if all_data:\n", + " A = np.mean(all_data)\n", + " SD = np.std(all_data)\n", + " data_summary.append([subject, shim_mode, A, SD])\n", + "\n", + "# Convert to DataFrame and save to CSV\n", + "df_summary = pd.DataFrame(data_summary, columns=['Subject', 'Shim_Mode', 'Average', 'Standard_Deviation'])\n", + "df_summary.to_csv('subject_shim_mode_summary.csv', index=False)\n", + "\n", + "# Step 3: Compute statistics across subjects\n", + "df_grouped = df_summary.groupby('Shim_Mode').agg({'Average': 'mean', 'Standard_Deviation': 'mean'}).reset_index()\n", + "df_grouped.to_csv('average_across_subjects.csv', index=False)\n", + "\n", + "# Step 4: ANOVA and Posthoc Tests\n", + "anova_result = f_oneway(*[group[\"Average\"].values for name, group in df_summary.groupby(\"Shim_Mode\")])\n", + "print(\"ANOVA Result:\", anova_result)\n", + "\n", + "# Perform posthoc test if ANOVA is significant\n", + "if anova_result.pvalue < 0.05:\n", + " posthoc_result = pairwise_tukeyhsd(df_summary['Average'], df_summary['Shim_Mode'])\n", + " print(\"Posthoc Tukey HSD Result:\\n\", posthoc_result)" + ] } ], "metadata": {