From bf4cf2f934e521c7e25fe1e062d43e5175bf433f Mon Sep 17 00:00:00 2001 From: Julien Cohen-Adad Date: Sat, 20 Jan 2024 10:49:53 -0500 Subject: [PATCH] Use manual CSF mask and improve CSF/SC figure (#69) * Using manual T2starw SC segmentation if it exists Fixes #56 * Get CSF masks from the derivatives Fixes #67 * Fixed cropping and metric extraction for CSF * Display CSF/SC instead of SC/CSF Clearer to show the better on top * Updated smoothing kernel to 40 --- data_processing.ipynb | 72 ++++++++++++++++++++++++++----------------- 1 file changed, 43 insertions(+), 29 deletions(-) diff --git a/data_processing.ipynb b/data_processing.ipynb index e957549..e237aea 100644 --- a/data_processing.ipynb +++ b/data_processing.ipynb @@ -205,13 +205,44 @@ "\n", "for subject in subjects:\n", " os.chdir(os.path.join(path_data, subject, \"anat\"))\n", - " # Use another syntax for sub-04. See: https://github.com/shimming-toolbox/rf-shimming-7t/issues/31\n", - " if subject == 'sub-04':\n", - " !sct_deepseg_sc -i {subject}_acq-CoV_T2starw.nii.gz -c t2 -qc {path_qc}\n", + " fname_manual_seg = os.path.join(path_labels, subject, \"anat\", f\"{subject}_acq-CoV_T2starw_label-SC_seg.nii.gz\")\n", + " if os.path.exists(fname_manual_seg):\n", + " # Manual segmentation already exists. Copy it to local folder\n", + " print(f\"{subject}: Manual segmentation found\\n\")\n", + " shutil.copyfile(fname_manual_seg, f\"{subject}_acq-CoV_T2starw_seg.nii.gz\")\n", + " # Generate QC report to make sure the manual segmentation is correct\n", + " !sct_qc -i {subject}_acq-CoV_T2starw.nii.gz -s {subject}_acq-CoV_T2starw_seg.nii.gz -p sct_deepseg_sc -qc {path_qc} -qc-subject {subject}\n", " else:\n", + " # Manual segmentation does not exist. Run automatic segmentation.\n", + " print(f\"{subject}: Manual segmentation not found\")\n", " !sct_deepseg_sc -i {subject}_acq-CoV_T2starw.nii.gz -c t2s -qc {path_qc}" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "eb9a9267", + "metadata": {}, + "outputs": [], + "source": [ + "# Copy CSF masks from the derivatives folder\n", + "\n", + "# For more details about how these masks were created, see: https://github.com/shimming-toolbox/rf-shimming-7t/issues/67\n", + "\n", + "for subject in subjects:\n", + " os.chdir(os.path.join(path_data, subject, \"anat\"))\n", + " fname_manual_seg = os.path.join(path_labels, subject, \"anat\", f\"{subject}_acq-CoV_T2starw_label-CSF_seg.nii.gz\")\n", + " if os.path.exists(fname_manual_seg):\n", + " # Manual segmentation already exists. Copy it to local folder\n", + " print(f\"{subject}: Manual segmentation found\\n\")\n", + " shutil.copyfile(fname_manual_seg, f\"{subject}_acq-CoV_T2starw_label-CSF_seg.nii.gz\")\n", + " # Generate QC report to make sure the manual segmentation is correct\n", + " !sct_qc -i {subject}_acq-CoV_T2starw.nii.gz -s {subject}_acq-CoV_T2starw_label-CSF_seg.nii.gz -p sct_deepseg_sc -qc {path_qc} -qc-subject {subject}\n", + " else:\n", + " # Manual segmentation does not exist. Panic!\n", + " print(f\"{subject}: Manual segmentation not found 😱\")" + ] + }, { "cell_type": "code", "execution_count": null, @@ -224,7 +255,8 @@ "for subject in subjects:\n", " os.chdir(os.path.join(path_data, subject, \"anat\"))\n", " !sct_crop_image -i {subject}_acq-CoV_T2starw.nii.gz -m {subject}_acq-CoV_T2starw_seg.nii.gz -dilate 20x20x0 -o {subject}_acq-CoV_T2starw_crop.nii.gz\n", - " !sct_crop_image -i {subject}_acq-CoV_T2starw_seg.nii.gz -m {subject}_acq-CoV_T2starw_seg.nii.gz -dilate 20x20x0 -o {subject}_acq-CoV_T2starw_crop_seg.nii.gz" + " !sct_crop_image -i {subject}_acq-CoV_T2starw_seg.nii.gz -m {subject}_acq-CoV_T2starw_seg.nii.gz -dilate 20x20x0 -o {subject}_acq-CoV_T2starw_crop_seg.nii.gz\n", + " !sct_crop_image -i {subject}_acq-CoV_T2starw_label-CSF_seg.nii.gz -m {subject}_acq-CoV_T2starw_seg.nii.gz -dilate 20x20x0 -o {subject}_acq-CoV_T2starw_crop_label-CSF_seg.nii.gz" ] }, { @@ -254,7 +286,6 @@ "source": [ "# Register *_T2starw to CoV_T2starw\n", "\n", - "# Commenting for now, due to https://github.com/shimming-toolbox/rf-shimming-7t/issues/35\n", "for subject in subjects:\n", " os.chdir(os.path.join(path_data, subject, \"anat\"))\n", " for shim_mode in shim_modes:\n", @@ -263,23 +294,6 @@ " !sct_register_multimodal -i {subject}_acq-{shim_mode}_T2starw.nii.gz -d {subject}_acq-CoV_T2starw_crop.nii.gz -dseg {subject}_acq-CoV_T2starw_crop_seg.nii.gz -param step=1,type=im,algo=dl -qc {path_qc}" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "eb9a9267", - "metadata": {}, - "outputs": [], - "source": [ - "# Create CSF mask by dilating the spinal cord segmentation\n", - "\n", - "for subject in subjects:\n", - " os.chdir(os.path.join(path_data, subject, \"anat\"))\n", - " !sct_maths -i {subject}_acq-CoV_T2starw_crop_seg.nii.gz -dilate 3 -shape disk -dim 2 -o {subject}_acq-CoV_T2starw_crop_seg_dilate.nii.gz\n", - " !sct_maths -i {subject}_acq-CoV_T2starw_crop_seg_dilate.nii.gz -sub {subject}_acq-CoV_T2starw_crop_seg.nii.gz -o {subject}_acq-CoV_T2starw_crop_CSFseg.nii.gz\n", - " # Generate QC report to assess CSF mask\n", - " !sct_qc -i {subject}_acq-CoV_T2starw_crop.nii.gz -s {subject}_acq-CoV_T2starw_crop_CSFseg.nii.gz -p sct_deepseg_sc -qc {path_qc} -qc-subject {subject}" - ] - }, { "cell_type": "markdown", "id": "aac9d889", @@ -303,7 +317,7 @@ "\n", "for subject in subjects:\n", " os.chdir(os.path.join(path_data, subject, \"anat\"))\n", - " for shim_method in ['CoV', 'CP']: # TODO: shim_modes:\n", + " for shim_method in shim_modes:\n", " # Shim methods are registered to the CoV T2starw scan, so we need to use the added suffix to identify them\n", " if shim_method == 'CoV':\n", " file_suffix = 'crop'\n", @@ -312,7 +326,7 @@ " fname_result_sc = os.path.join(path_results, f\"{subject}_acq-{shim_method}_T2starw_label-SC.csv\")\n", " !sct_extract_metric -i {subject}_acq-{shim_method}_T2starw_{file_suffix}.nii.gz -f {subject}_acq-CoV_T2starw_crop_seg.nii.gz -method wa -vert 3:9 -vertfile {subject}_acq-CoV_T2starw_crop_seg_labeled.nii.gz -perslice 1 -o {fname_result_sc}\n", " fname_result_csf = os.path.join(path_results, f\"{subject}_acq-{shim_method}_T2starw_label-CSF.csv\")\n", - " !sct_extract_metric -i {subject}_acq-{shim_method}_T2starw_{file_suffix}.nii.gz -f {subject}_acq-CoV_T2starw_crop_CSFseg.nii.gz -method wa -vert 3:9 -vertfile {subject}_acq-CoV_T2starw_crop_seg_labeled.nii.gz -perslice 1 -o {fname_result_csf}" + " !sct_extract_metric -i {subject}_acq-{shim_method}_T2starw_{file_suffix}.nii.gz -f {subject}_acq-CoV_T2starw_crop_label-CSF_seg.nii.gz -method wa -vert 3:9 -vertfile {subject}_acq-CoV_T2starw_crop_seg_labeled.nii.gz -perslice 1 -o {fname_result_csf}" ] }, { @@ -322,12 +336,12 @@ "metadata": {}, "outputs": [], "source": [ - "# Make figure of SC/CSF signal ratio from T2starw scan\n", + "# Make figure of CSF/SC signal ratio from T2starw scan\n", "\n", "# Go back to root data folder\n", "os.chdir(path_data)\n", "\n", - "def smooth_data(data, window_size=20):\n", + "def smooth_data(data, window_size=40):\n", " \"\"\" Apply a simple moving average to smooth the data. \"\"\"\n", " return uniform_filter1d(data, size=window_size, mode='nearest')\n", "\n", @@ -360,7 +374,7 @@ "for i, subject in enumerate(subjects):\n", " ax = axes[i]\n", "\n", - " for shim_method in ['CoV', 'CP']: # TODO: shim_modes:\n", + " for shim_method in shim_modes:\n", " # Initialize list to collect data for this shim method\n", " method_data = []\n", "\n", @@ -375,7 +389,7 @@ " data_csf = df['WA()']\n", " \n", " # Compute ratio\n", - " data_sc_csf_ratio = data_sc / data_csf\n", + " data_sc_csf_ratio = data_csf / data_sc\n", "\n", " # Normalize the x-axis to a 0-1 scale for each subject\n", " x_subject = np.linspace(0, 1, len(data_sc_csf_ratio))\n", @@ -400,7 +414,7 @@ " ax.set_xticklabels([''] * len(original_vector))\n", "\n", " ax.set_title(f'{subject}', fontsize=font_size)\n", - " ax.set_ylabel('Cord/CSF T2starw signal ratio', fontsize=font_size)\n", + " ax.set_ylabel('CSF/Cord T2starw signal ratio', fontsize=font_size)\n", " ax.tick_params(axis='y', which='major', labelsize=font_size-4)\n", "\n", " # Add legend only to the first subplot\n",