forked from kamenbliznashki/normalizing_flows
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
373 lines (296 loc) · 16.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributions as D
from torch.utils.data import DataLoader, Dataset
import unittest
from unittest.mock import MagicMock
from maf import MADE, MADEMOG, MAF, MAFMOG, RealNVP, BatchNorm, LinearMaskedCoupling, train
from glow import Actnorm, Invertible1x1Conv, AffineCoupling, Squeeze, Split, FlowStep, FlowLevel, Glow, train_epoch
from data import fetch_dataloaders
args = MagicMock()
args.input_size = 1000
args.batch_size = 100
args.device = torch.device('cpu')
NORM_TOL = 1e-4 # tolerance for difference in vector norms
torch.manual_seed(1)
# --------------------
# Test invertibility and log dets of individual layers
# --------------------
def test_layer(l, input_dims, cond_label_size=None, norm_tol=NORM_TOL):
x = torch.randn(input_dims)
batch_size = input_dims[0]
labels = None
if cond_label_size is not None: # make one hot labels
labels = torch.eye(cond_label_size).repeat(batch_size // cond_label_size + 1, 1)[:batch_size]
u, logd = l(x) if labels is None else l(x, labels)
recon_x, inv_logd = l.inverse(u) if labels is None else l.inverse(u, labels)
d_data, d_logd = (recon_x - x).norm(), (logd + inv_logd).norm()
assert d_data < norm_tol, 'Data reconstruction fail - norm of difference = {}.'.format(d_data)
assert d_logd < norm_tol, 'Log determinant inversion fail. - norm of difference = {}'.format(d_logd)
class TestFlowLayers(unittest.TestCase):
def test_batch_norm(self):
l = BatchNorm(args.input_size)
l.train()
for i in range(3):
with self.subTest(train_loop_iter=i):
test_layer(l, input_dims=(args.batch_size, args.input_size))
l.eval()
for i in range(2):
with self.subTest(eval_loop_iter=i):
test_layer(l, input_dims=(args.batch_size, args.input_size))
def test_linear_coupling(self):
mask = torch.arange(args.input_size).float() % 2
# unconditional
test_layer(LinearMaskedCoupling(args.input_size, hidden_size=10, n_hidden=1, mask=mask), input_dims=(args.batch_size, args.input_size))
test_layer(LinearMaskedCoupling(args.input_size, hidden_size=10, n_hidden=2, mask=mask), input_dims=(args.batch_size, args.input_size))
# conditional
cond_label_size = 10
test_layer(LinearMaskedCoupling(args.input_size, hidden_size=10, n_hidden=1, mask=mask, cond_label_size=cond_label_size),
input_dims=(args.batch_size, args.input_size), cond_label_size=cond_label_size)
test_layer(LinearMaskedCoupling(args.input_size, hidden_size=10, n_hidden=2, mask=mask, cond_label_size=cond_label_size),
input_dims=(args.batch_size, args.input_size), cond_label_size=cond_label_size)
def test_made(self):
test_layer(MADE(args.input_size, hidden_size=10, n_hidden=3), input_dims=(args.batch_size, args.input_size))
def test_actnorm(self):
test_layer(Actnorm(param_dim=(1,3,1,1)), input_dims=(args.batch_size, 3, 50, 50))
def test_invertible1x1conv(self):
test_layer(Invertible1x1Conv(n_channels=24), input_dims=(args.batch_size, 24, 50, 50), norm_tol=1e-3)
test_layer(Invertible1x1Conv(n_channels=12, lu_factorize=True), input_dims=(args.batch_size, 12, 50, 50), norm_tol=1e-3)
def test_affinecoupling(self):
test_layer(AffineCoupling(n_channels=4, width=12), input_dims=(args.batch_size, 4, 50, 50), norm_tol=5e-4)
def test_squeeze(self):
net = Squeeze()
x = torch.rand(args.batch_size, 12, 20, 30)
recon_x = net.inverse(net(x))
y = net(net.inverse(x))
assert torch.allclose(x, recon_x), 'Data reconstruction failed.'
assert torch.allclose(x, y)
def test_split(self):
net = Split(n_channels=10)
x = torch.randn(args.batch_size, 10, 20, 30)
x1, z2, logd = net(x)
recon_x, inv_logd = net.inverse(x1, z2)
d_data, d_logd = (recon_x - x).norm(), (logd + inv_logd).norm()
assert d_data < 1e-4, 'Data reconstruction fail - norm of difference = {}.'.format(d_data)
assert d_logd < 1e-4, 'Log determinant inversion fail. - norm of difference = {}'.format(d_logd)
def test_flowstep(self):
test_layer(FlowStep(n_channels=4, width=12), input_dims=(args.batch_size, 4, 50, 50), norm_tol=1e-3)
def test_flowlevel(self):
net = FlowLevel(n_channels=3, width=12, depth=2)
x = torch.randn(args.batch_size, 3, 32, 32)
x1, z2, logd = net(x)
recon_x, inv_logd = net.inverse(x1, z2)
d_data, d_logd = (recon_x - x).norm(), (logd + inv_logd).norm()
assert d_data < 5e-4, 'Data reconstruction fail - norm of difference = {}.'.format(d_data)
assert d_logd < 5e-4, 'Log determinant inversion fail. - norm of difference = {}'.format(d_logd)
def test_glow(self):
net = Glow(width=12, depth=3, n_levels=3)
x = torch.randn(args.batch_size, 3, 32, 32)
zs, logd = net(x)
recon_x, inv_logd = net.inverse(zs)
y, _ = net.inverse(batch_size=args.batch_size)
d_data, d_data_y, d_logd = (recon_x - x).norm(), (x - y).norm(), (logd + inv_logd).norm()
assert d_data < 1e-3, 'Data reconstruction fail - norm of difference = {}.'.format(d_data)
# assert d_data_y < 1e-3, 'Data reconstruction (inv > base > inv) fail - norm of difference = {}.'.format(d_data_y)
assert d_logd < 1e-3, 'Log determinant inversion fail. - norm of difference = {}'.format(d_logd)
# --------------------
# Test MAF
# --------------------
# Test flow invertibility (KL=0) at initalization
@torch.no_grad()
def test_untrained_model(model, cond_label_size=None):
# 1. sample Gaussian data;
# 2. run model forward and reverse;
# 3. roconstruct data;
# 4. measure KL between Gaussian fitted to the data and the base distribution
n_samples = 1000
data = model.base_dist.sample((n_samples,))
labels = None
if cond_label_size is not None: # make one hot labels
labels = torch.eye(cond_label_size).repeat(n_samples // cond_label_size + 1, 1)[:n_samples]
u, logd = model(data, labels)
recon_data, _ = model.inverse(u, labels)
recon_dist = D.Normal(recon_data.mean(0), recon_data.var(0).sqrt())
kl = D.kl.kl_divergence(recon_dist, model.base_dist).sum(-1)
print('KL (q || p) = {:.4f}'.format(kl))
# Test flow can train to random numbers in N(0,1) ie KL(random numbers driving flow || base distribution) = 0
@torch.no_grad()
def test_trained_model(model, dl, cond_label_size=None):
# 1. sample toy data;
# 2. run model forward and generate random numbers driving the model;
# 3. measure KL between Gaussian fitted to random numbers driving the model and the base distribution
data, labels = next(iter(dl))
labels = None
if cond_label_size is not None: # make one hot labels
labels = torch.eye(cond_label_size).repeat(n_samples // cond_label_size + 1, 1)[:n_samples]
u, logd = model(data, labels)
u_dist = D.Normal(u.mean(0), u.std(0))
kl = D.kl.kl_divergence(u_dist, model.base_dist).sum()
print('KL (u || p) = {:.4f}'.format(kl))
class TestMAFUntrained(unittest.TestCase):
def setUp(self):
self.cond_label_size = 2
def test_made_1_hidden(self):
test_untrained_model(MADE(input_size=2, hidden_size=10, n_hidden=1, cond_label_size=None, activation='relu', input_order='sequential'))
def test_made_1_hidden_conditional(self):
test_untrained_model(MADE(input_size=2, hidden_size=10, n_hidden=1, cond_label_size=self.cond_label_size, activation='relu',
input_order='sequential'), self.cond_label_size)
def test_made_2_hidden(self):
test_untrained_model(MADE(input_size=2, hidden_size=10, n_hidden=2, cond_label_size=None, activation='relu', input_order='sequential'))
def test_made_2_hidden_conditional(self):
test_untrained_model(MADE(input_size=2, hidden_size=10, n_hidden=2, cond_label_size=self.cond_label_size, activation='relu',
input_order='sequential'), self.cond_label_size)
def test_made_200_inputs_random_mask(self):
test_untrained_model(MADE(input_size=200, hidden_size=10, n_hidden=2, cond_label_size=None, activation='relu', input_order='random'))
def test_maf_1_blocks_no_bn(self):
test_untrained_model(MAF(n_blocks=1, input_size=2, hidden_size=10, n_hidden=1, cond_label_size=None,
activation='relu', input_order='sequential', batch_norm=False))
def test_maf_1_blocks_bn(self):
test_untrained_model(MAF(n_blocks=1, input_size=2, hidden_size=10, n_hidden=1, cond_label_size=None,
activation='relu', input_order='sequential', batch_norm=True))
def test_maf_2_blocks(self):
test_untrained_model(MAF(n_blocks=2, input_size=2, hidden_size=10, n_hidden=1, cond_label_size=None,
activation='relu', input_order='sequential', batch_norm=True))
def test_maf_1_blocks_conditional(self):
test_untrained_model(MAF(n_blocks=1, input_size=2, hidden_size=10, n_hidden=1, cond_label_size=self.cond_label_size,
activation='relu', input_order='sequential', batch_norm=True), self.cond_label_size)
def test_maf_2_blocks_conditional(self):
test_untrained_model(MAF(n_blocks=2, input_size=2, hidden_size=10, n_hidden=1, cond_label_size=self.cond_label_size,
activation='relu', input_order='sequential', batch_norm=True), self.cond_label_size)
def test_realnvp_1_block_200_inputs(self):
test_untrained_model(RealNVP(n_blocks=1, input_size=200, hidden_size=10, n_hidden=2, cond_label_size=None))
def test_realnvp_2_block_200_inputs(self):
test_untrained_model(RealNVP(n_blocks=2, input_size=200, hidden_size=10, n_hidden=2, cond_label_size=None))
def test_realnvp_2_blocks_conditional(self):
test_untrained_model(RealNVP(n_blocks=2, input_size=200, hidden_size=10, n_hidden=2, cond_label_size=self.cond_label_size),
self.cond_label_size)
def test_mademog_1_comp(self):
test_untrained_model(MADEMOG(n_components=1, input_size=10, hidden_size=10, n_hidden=2, cond_label_size=None, activation='relu',
input_order='sequential'))
def test_mademog_10_comp(self):
test_untrained_model(MADEMOG(n_components=10, input_size=200, hidden_size=10, n_hidden=2, cond_label_size=None, activation='relu',
input_order='sequential'))
def test_mafmog_1_block_1_comp(self):
test_untrained_model(MAFMOG(n_blocks=1, n_components=1, input_size=2, hidden_size=10, n_hidden=1, cond_label_size=self.cond_label_size,
activation='relu', input_order='sequential', batch_norm=True), self.cond_label_size)
def test_mafmog_2_blocks_10_comp_conditional(self):
test_untrained_model(MAFMOG(n_blocks=2, n_components=10, input_size=2, hidden_size=10, n_hidden=1, cond_label_size=self.cond_label_size,
activation='relu', input_order='sequential', batch_norm=True), self.cond_label_size)
class TestMAFTrained(unittest.TestCase):
def setUp(self):
args = MagicMock()
args.cond_label_size = None
args.batch_size = 100
args.device = torch.device('cpu')
dl, _ = fetch_dataloaders('TOY', args.batch_size, args.device, flip_toy_var_order=False)
def _train(model, n_steps):
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-6)
print('Untrained: ')
test_trained_model(model, dl)
for _ in range(n_steps):
train(model, dl, optimizer, 0, args)
print('Trained: ')
test_trained_model(model, dl)
self._train = _train
def test_made(self):
model = MADE(input_size=2, hidden_size=100, n_hidden=1, cond_label_size=None, activation='relu', input_order='sequential')
self._train(model, 10)
def test_mademog(self):
model = MADEMOG(n_components=10, input_size=2, hidden_size=100, n_hidden=1, cond_label_size=None, activation='relu', input_order='sequential')
self._train(model, 5)
def test_maf_5(self):
model = MAF(n_blocks=5, input_size=2, hidden_size=100, n_hidden=1, cond_label_size=None,
activation='relu', input_order='sequential', batch_norm=True)
self._train(model, 1)
def test_mafmog_5_comp_1(self):
model = MAFMOG(n_blocks=5, n_components=1, input_size=2, hidden_size=100, n_hidden=1,
cond_label_size=None, activation='relu', input_order='sequential', batch_norm=True)
self._train(model, 5)
def test_mafmog_5_comp_10(self):
model = MAFMOG(n_blocks=5, n_components=10, input_size=2, hidden_size=100, n_hidden=1,
cond_label_size=None, activation='relu', input_order='sequential', batch_norm=True)
self._train(model, 10)
def test_train_realnvp_5(self):
model = RealNVP(n_blocks=5, input_size=2, hidden_size=100, n_hidden=1, cond_label_size=None, batch_norm=True)
self._train(model, 5)
# --------------------
# Test Glow
# --------------------
# Generate a dataset from a 2-dim Gaussian distribution and expand to `image size` of (3,32,32)
class ToyDistribution(D.Distribution):
def __init__(self, flip_var_order):
super().__init__()
self.flip_var_order = flip_var_order
self.p_x2 = D.Normal(0, 4)
self.p_x1 = lambda x2: D.Normal(0.25 * x2**2, 1)
def rsample(self, sample_shape=torch.Size()):
x2 = self.p_x2.sample(sample_shape)
x1 = self.p_x1(x2).sample()
if self.flip_var_order:
return torch.stack((x2, x1), dim=-1).expand(3,-1,-1)
else:
return torch.stack((x1, x2), dim=0).repeat(16,1).expand(3,-1,-1)
def log_prob(self, value):
if self.flip_var_order:
value = value.flip(1)
return self.p_x1(value[:,1]).log_prob(value[:,0]) + self.p_x2.log_prob(value[:,1])
class TOY(Dataset):
def __init__(self, dataset_size=2500, flip_var_order=False):
self.input_size = 32
self.label_size = 1
self.dataset_size = dataset_size
self.base_dist = ToyDistribution(flip_var_order)
def __len__(self):
return self.dataset_size
def __getitem__(self, i):
return self.base_dist.sample((32,)), torch.zeros(self.label_size)
class TestGlowUntrained(unittest.TestCase):
def setUp(self):
def test_kl(model):
n_samples = 1000
data = model.base_dist.sample((n_samples,3,32,32)).squeeze()
zs, logd = model(data)
recon_data, _ = model.inverse(zs)
recon_dist = D.Normal(recon_data.mean(0), recon_data.var(0).sqrt())
kl = D.kl.kl_divergence(recon_dist, model.base_dist).mean()
print('Model: depth {}, levels {}; Avg per pixel KL (q||p) = {:.4f}'.format(
len(model.flowstep), len(model.flowlevels), kl))
self.test_kl = test_kl
def test_glow_depth_1_levels_1(self):
# 1. sample data; 2. run model forward and reverse; 3. roconstruct data; 4. measure KL between Gaussian fitted to the data and the base distribution
self.test_kl(Glow(width=12, depth=1, n_levels=1))
def test_glow_depth_2_levels_2(self):
# 1. sample data; 2. run model forward and reverse; 3. roconstruct data; 4. measure KL between Gaussian fitted to the data and the base distribution
self.test_kl(Glow(width=12, depth=2, n_levels=2))
class TestGlowTrained(unittest.TestCase):
def setUp(self):
args = MagicMock()
args.device = torch.device('cpu')
dl = DataLoader(TOY(), batch_size=100)
@torch.no_grad()
def _test_trained_model(model, dl, cond_label_size=None):
data, _ = next(iter(dl))
zs, logd = model(data)
zs = torch.cat([z.flatten(1) for z in zs], dim=1) # flatten the z's and concat
zs_dist = D.Normal(zs.mean(0), zs.std(0))
kl = D.kl.kl_divergence(zs_dist, model.base_dist).mean()
print('Mean per pixel KL (zs || N(0,1)) = {:.4f}'.format(kl))
print('Mean data bits per pixel: {:.4f}'.format(-model.log_prob(data, bits_per_pixel=True).mean(0)))
def _train(model, n_steps):
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-6)
print('Model: depth {}, levels {}. Untrained:'.format(len(model.flowstep), len(model.flowlevels)))
_test_trained_model(model, dl)
for _ in range(n_steps):
train_epoch(model, dl, optimizer, 0, args)
print('Trained: ')
_test_trained_model(model, dl)
self._train = _train
def test_glow_1_1(self):
model = Glow(width=12, depth=1, n_levels=1)
self._train(model, 3)
def test_glow_3_3(self):
model = Glow(width=24, depth=3, n_levels=3)
self._train(model, 3)
if __name__ == '__main__':
unittest.main()