-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
105 lines (91 loc) · 4.77 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import multiprocessing
import torch
from torch.utils import data
from functools import partial
import torchvision.transforms as transforms
import torchvision.datasets as datasets
cifar10_mean = [0.4914, 0.4822, 0.4465]
cifar10_std = [0.2023, 0.1994, 0.2010]
"""
MNIST and CIFAR10 datasets with `index` also returned in `__getitem__`
"""
class MNIST(datasets.MNIST):
def __init__(self, root, train=True, transform=None, target_transform=None,
download=False, use_index=False):
super().__init__(root, train, transform, target_transform, download)
self.use_index = use_index
def __getitem__(self, index):
img, target = super().__getitem__(index)
if self.use_index:
return img, target, index
else:
return img, target
class CIFAR10(datasets.CIFAR10):
def __init__(self, root, train=True, transform=None, target_transform=None,
download=False, use_index=False):
super().__init__(root, train, transform, target_transform, download)
self.use_index = use_index
def __getitem__(self, index):
img, target = super().__getitem__(index)
if self.use_index:
return img, target, index
else:
return img, target
def load_data(args, data, batch_size, test_batch_size, use_index=False, aug=True):
if data == 'MNIST':
"""Fix 403 Forbidden error in downloading MNIST
See https://github.com/pytorch/vision/issues/1938."""
from six.moves import urllib
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
dummy_input = torch.randn(2, 1, 28, 28)
mean, std = torch.tensor([0.0]), torch.tensor([1.0])
train_data = MNIST('./data', train=True, download=True, transform=transforms.ToTensor(), use_index=use_index)
test_data = MNIST('./data', train=False, download=True, transform=transforms.ToTensor(), use_index=use_index)
elif data == 'CIFAR':
mean = torch.tensor(cifar10_mean)
std = torch.tensor([0.2, 0.2, 0.2] if args.lip or args.global_lip or 'lip' in args.model else cifar10_std)
dummy_input = torch.randn(2, 3, 32, 32)
normalize = transforms.Normalize(mean = mean, std = std)
if aug:
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 2, padding_mode='edge'),
transforms.ToTensor(),
normalize])
else:
# No random cropping
transform = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize])
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
train_data = CIFAR10('./data', train=True, download=True,
transform=transform, use_index=use_index)
test_data = CIFAR10('./data', train=False, download=True,
transform=transform_test, use_index=use_index)
elif data == "tinyimagenet":
mean = torch.tensor([0.4802, 0.4481, 0.3975])
std = torch.tensor([0.22, 0.22, 0.22] if args.lip else [0.2302, 0.2265, 0.2262])
dummy_input = torch.randn(2, 3, 64, 64)
normalize = transforms.Normalize(mean=mean, std=std)
data_dir = 'data/tinyImageNet/tiny-imagenet-200'
train_data = datasets.ImageFolder(data_dir + '/train',
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(64, 4, padding_mode='edge'),
transforms.ToTensor(),
normalize,
]))
test_data = datasets.ImageFolder(data_dir + '/val',
transform=transforms.Compose([
transforms.ToTensor(),
normalize]))
train_data = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=0)
test_data = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, pin_memory=True, num_workers=0)
train_data.mean = test_data.mean = mean
train_data.std = test_data.std = std
for loader in [train_data, test_data]:
loader.mean, loader.std = mean, std
loader.data_max = data_max = torch.reshape((1. - mean) / std, (1, -1, 1, 1))
loader.data_min = torch.reshape((0. - mean) / std, (1, -1, 1, 1))
dummy_input = dummy_input.to(args.device)
return dummy_input, train_data, test_data