-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
214 lines (184 loc) · 8.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import time
import json
import pdb
from torch.utils.tensorboard import SummaryWriter
from auto_LiRPA import BoundedModule, CrossEntropyWrapper
from auto_LiRPA.perturbations import *
from auto_LiRPA.utils import MultiAverageMeter
from auto_LiRPA.bound_ops import *
from config import load_config
from datasets import load_data
from utils import *
from manual_init import manual_init, kaiming_init
from argparser import parse_args
from certified import cert
from regularization import compute_reg, compute_stab_reg, compute_vol_reg, compute_L1_reg
args = parse_args()
writer = SummaryWriter(os.path.join(args.dir, 'log'), flush_secs=10)
if not args.verify:
set_file_handler(logger, args.dir)
logger.info('Arguments: {}'.format(args))
def Train(model, model_ori, t, loader, eps_scheduler, opt, loss_fusion=False, valid=False):
train = opt is not None
meter = MultiAverageMeter()
meter_layer = []
data_max, data_min, std = loader.data_max, loader.data_min, loader.std
if args.device == 'cuda':
data_min, data_max, std = data_min.cuda(), data_max.cuda(), std.cuda()
if train:
model_ori.train(); model.train(); eps_scheduler.train()
eps_scheduler.step_epoch()
else:
model_ori.eval(); model.eval(); eps_scheduler.eval()
for i, (data, labels) in enumerate(loader):
start = time.time()
eps_scheduler.step_batch()
eps = eps_scheduler.get_eps()
epoch_progress = (i+1) * 1. / len(loader) if train else 1.0
if train:
eps *= args.train_eps_mul
if eps < args.min_eps:
eps = args.min_eps
if args.fix_eps:
eps = eps_scheduler.get_max_eps()
if args.natural:
eps = 0.
reg = t <= args.num_reg_epochs
# For small eps just use natural training, no need to compute LiRPA bounds
batch_method = 'natural' if (eps < 1e-50) else 'robust'
robust = batch_method == 'robust'
# labels = labels.to(torch.long)
if args.device == 'cuda':
data, labels = data.cuda().detach().requires_grad_(), labels.cuda()
data_batch, labels_batch = data, labels
grad_acc = args.grad_acc_steps
assert data.shape[0] % grad_acc == 0
bsz = data.shape[0] // grad_acc
for k in range(grad_acc):
if grad_acc > 1:
data, labels = data_batch[bsz*k:bsz*(k+1)], labels_batch[bsz*k:bsz*(k+1)]
regular_ce, robust_loss, regular_err, robust_err = cert(
args, model, model_ori, t, epoch_progress, data, labels, eps=eps,
data_max=data_max, data_min=data_min, std=std, robust=robust, reg=reg,
loss_fusion=loss_fusion, eps_scheduler=eps_scheduler,
train=train, meter=meter)
update_meter(meter, regular_ce, robust_loss, regular_err, robust_err, data.size(0))
if reg:
loss = compute_reg(args, model, meter, eps, eps_scheduler)
elif args.xiao_reg:
loss = compute_stab_reg(args, model, meter, eps, eps_scheduler) + compute_L1_reg(args, model_ori, meter, eps, eps_scheduler)
elif args.vol_reg: # by colt
loss = compute_vol_reg(args, model, meter, eps, eps_scheduler)
else:
loss = torch.tensor(0.).to(args.device)
if robust:
loss += robust_loss
else:
loss += regular_ce
meter.update('Loss', loss.item(), data.size(0))
if train:
loss /= grad_acc
loss.backward()
if args.check_nan:
for p in model.parameters():
if torch.isnan(p.grad).any():
pdb.set_trace()
ckpt = { 'model_ori': model_ori, 'args_cert': (t, epoch_progress, data, labels, eps, data_max, data_min, std, robust, reg, loss_fusion, eps_scheduler, train, meter) }
torch.save(ckpt, 'nan_ckpt')
pdb.set_trace()
if train:
grad_norm = torch.nn.utils.clip_grad_norm_(model_ori.parameters(), max_norm=args.grad_norm)
meter.update('grad_norm', grad_norm)
opt.step()
opt.zero_grad()
meter.update('wnorm', get_weight_norm(model_ori))
meter.update('Time' , time.time() - start)
if (i + 1) % args.log_interval == 0 and (train or args.eval or args.verify):
logger.info('[{:2d}:{:4d}/{:4d}]: eps={:.8f} {}'.format(t, i + 1, len(loader), eps, meter))
if args.debug:
print()
pdb.set_trace()
logger.info('[{:2d}]: eps={:.8f} {}'.format(t, eps, meter))
if batch_method != 'natural':
meter.update('eps', eps_scheduler.get_eps())
if t <= args.num_reg_epochs:
update_log_reg(writer, meter, t, train, model)
update_log_writer(args, writer, meter, t, train, robust=(batch_method != 'natural'))
return meter
def main(args):
config = load_config(args.config)
logger.info('config: {}'.format(json.dumps(config)))
set_seed(args.seed or config['seed'])
model_ori, checkpoint, epoch, best = prepare_model(args, logger, config)
logger.info('Model structure: \n {}'.format(str(model_ori)))
custom_ops = {}
bound_config = config['bound_params']
batch_size = (args.batch_size or config['batch_size'])
test_batch_size = args.test_batch_size or batch_size
dummy_input, train_data, test_data = load_data(
args, config['data'], batch_size, test_batch_size, aug=not args.no_data_aug)
lf = args.loss_fusion and args.bound_type == 'CROWN-IBP'
bound_opts = bound_config['bound_opts']
model_ori.train()
model = BoundedModule(model_ori, dummy_input, bound_opts=bound_opts, custom_ops=custom_ops, device=args.device)
model_ori.to(args.device)
if checkpoint is None:
if args.manual_init:
manual_init(args, model_ori, model, train_data)
if args.kaiming_init:
kaiming_init(model_ori)
if lf:
model_loss = BoundedModule(
CrossEntropyWrapper(model_ori),
(dummy_input.cuda(), torch.zeros(1, dtype=torch.long).cuda()),
bound_opts=get_bound_opts_lf(bound_opts), device=args.device)
params = list(model_loss.parameters())
else:
model_loss = model
params = list(model_ori.parameters())
logger.info('Parameter shapes: {}'.format([p.shape for p in params]))
if args.multi_gpu:
raise NotImplementedError('Multi-GPU is not supported yet')
opt = get_optimizer(args, params, checkpoint)
max_eps = args.eps or bound_config['eps']
eps_scheduler = get_eps_scheduler(args, max_eps, train_data)
lr_scheduler = get_lr_scheduler(args, opt)
if epoch > 0 and not args.plot:
# skip epochs
eps_scheduler.train()
for i in range(epoch):
# FIXME Can use `last_epoch` argument of lr_scheduler
lr_scheduler.step()
eps_scheduler.step_epoch(verbose=False)
if args.verify:
logger.info('Inference')
meter = Train(model, model_ori, 10000, test_data, eps_scheduler, None, loss_fusion=False)
logger.info(meter)
else:
timer = 0.0
for t in range(epoch + 1, args.num_epochs + 1):
logger.info('Epoch {}, learning rate {}, dir {}'.format(
t, lr_scheduler.get_last_lr(), args.dir))
start_time = time.time()
if lf:
Train(model_loss, model_ori, t, train_data, eps_scheduler, opt, loss_fusion=True)
else:
Train(model, model_ori, t, train_data, eps_scheduler, opt)
update_state_dict(model_ori, model_loss)
epoch_time = time.time() - start_time
timer += epoch_time
lr_scheduler.step()
logger.info('Epoch time: {:.4f}, Total time: {:.4f}'.format(epoch_time, timer))
is_best = False
if t % args.test_interval == 0:
logger.info('Test without loss fusion')
with torch.no_grad():
meter = Train(model, model_ori, t, test_data, eps_scheduler, None, loss_fusion=False)
if eps_scheduler.get_eps() == eps_scheduler.get_max_eps():
if meter.avg('Rob_Err') < best[1]:
is_best, best = True, (meter.avg('Err'), meter.avg('Rob_Err'), t)
logger.info('Best epoch {}, error {:.4f}, robust error {:.4f}'.format(
best[-1], best[0], best[1]))
save(args, epoch=t, best=best, model=model_ori, opt=opt, is_best=is_best)
if __name__ == '__main__':
main(args)