-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
152 lines (138 loc) · 6.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import os
import torch
import torch.nn as nn
from dataset import load_data, get_data_loader
from models import *
from utils import *
from tqdm import tqdm
from sklearn.metrics import f1_score
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='node', choices=['node', 'link'])
parser.add_argument('--model-graph', type=str, default='GCN_tiny', help='Encoder for the graph')
parser.add_argument('--hidden-dim', type=int, default=512)
parser.add_argument('--num-epochs', type=int, default=5)
parser.add_argument('--lr', type=float, default=2e-3)
parser.add_argument('--batch-size', type=int, default=512)
parser.add_argument('--log-interval', type=int, default=1000)
parser.add_argument('--image-size', type=int, default=8)
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--data-proportion', type=float, default=1.0, help='Optionally we may only use part of the data')
parser.add_argument('--num-dl-workers', type=int, default=8, help='Number of workers for the data loader')
parser.add_argument('--load', type=str, help='Load a trained checkpoint')
parser.add_argument('--infer', action='store_true')
parser.add_argument('--save-dir', type=str, default='output', help='Directory for saving trained models')
parser.add_argument('--save-infer', type=str, help='Path for saving inference results')
parser.add_argument('--use-images', action='store_true')
parser.add_argument('--vision-model', type=str, default=None, choices=[None, 'pure', 'combined'])
args = parser.parse_args()
def run_epoch(model, data_loader, opt=None):
loss_func = nn.CrossEntropyLoss()
meter = MultiAverageMeter()
saved_results = []
y_true_all, y_pred_all = [], []
for i, data in tqdm(enumerate(data_loader), total=len(data_loader)):
if args.device == 'cuda':
data.x, data.y = data.x.to(args.device), data.y.to(args.device)
data.edge_index = data.edge_index.to(args.device)
data.edge_attr = data.edge_attr.to(args.device)
if args.task == "node":
if args.use_images:
x_graph = data.x[:, :-args.image_size**2]
x_vision = data.x[x_graph.sum(dim=-1) == 0][:, -args.image_size**2:]
else:
x_graph = data.x
if args.vision_model is None:
y = model(x_graph, data.edge_index, data.edge_attr)[x_graph.sum(dim=-1) == 0]
elif args.vision_model == 'pure':
assert args.use_images
y = model(x_vision)
elif args.vision_model == 'combined':
assert args.use_images
y = model(x_graph, data.edge_index, data.edge_attr, x_vision)#[x_graph.sum(dim=-1) == 0]
loss = loss_func(y, data.y)
pred = y.argmax(dim=-1)
acc = (pred == data.y).float().mean()
y_pred_all += pred.tolist()
y_true_all += data.y.tolist()
elif args.task == "link":
y = model(data.x, data.edge_index, data.edge_attr)[data.edge_attr.sum(dim=-1)==0]
loss = loss_func(y, data.y)
pred = y.argmax(dim=-1)
acc = (pred == data.y).float().mean()
size = y.shape[0]
meter.update('loss', loss, size)
meter.update('acc', acc, size)
if opt:
loss.backward()
opt.step()
opt.zero_grad()
if (i + 1) % args.log_interval == 0:
print(f'Step {i+1}/{len(data_loader)}: {meter}')
if args.save_infer:
saved_results.append({
'x': data.x.cpu(),
'y': data.y.cpu(),
'edge_index': data.edge_index.cpu(),
'edge_attr': data.edge_attr.cpu(),
'output': y.cpu(),
})
if args.task == "node":
meter.update('f1_macro', f1_score(y_true_all, y_pred_all, average='macro'))
meter.update('f1_micro', f1_score(y_true_all, y_pred_all, average='micro'))
print(meter)
if args.save_infer:
torch.save(saved_results, args.save_infer)
print(f'Results saved to {args.save_infer}')
if __name__ == '__main__':
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
train_data, test_data = load_data(task=args.task,
data_proportion=args.data_proportion, use_images=args.use_images,
image_size=args.image_size)
train_data_loader = get_data_loader(train_data, batch_size=args.batch_size, train=True, num_workers=args.num_dl_workers)
test_data_loader = get_data_loader(test_data, batch_size=args.batch_size, train=False, num_workers=args.num_dl_workers)
if args.task == 'node':
input_dim = num_classes = train_data.num_atom_types
if 'GAT' in args.model_graph:
model_graph = eval(args.model_graph)(input_dim, args.hidden_dim, args.hidden_dim,
train_data.num_bond_types)
else:
model_graph = eval(args.model_graph)(input_dim, args.hidden_dim, args.hidden_dim)
if args.vision_model == 'pure':
model = PureVisionNodeClassifier(num_classes)
elif args.vision_model == 'combined':
model = CombinedNodeClassifier(model_graph, num_classes)
else:
model = NodeClassifier(model_graph, args.hidden_dim, num_classes)
print('Node classification Model:', model)
elif args.task == 'link':
input_dim = train_data.num_atom_types
if 'GAT' in args.model_graph:
model_graph = eval(args.model_graph)(input_dim, args.hidden_dim, args.hidden_dim, train_data.num_bond_types)
else:
model_graph = eval(args.model_graph)(input_dim, args.hidden_dim, args.hidden_dim)
# raise Exception("Only GAT model works for Link Classificaiton")
model = LinkClassification(model_graph, args.hidden_dim, train_data.num_bond_types)
print('Link classification Model:', model)
else:
raise NotImplementedError
model = model.to(args.device)
opt = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.load:
print(f'Loading checkpoint {args.load}')
checkpoint = torch.load(args.load)
model.load_state_dict(checkpoint)
if args.infer:
print('Running inference')
with torch.no_grad():
run_epoch(model, test_data_loader)
else:
for t in range(args.num_epochs):
print(f'Training epoch {t + 1}')
run_epoch(model, train_data_loader, opt)
print('Testing')
with torch.no_grad():
run_epoch(model, test_data_loader)
torch.save(model.state_dict(), os.path.join(args.save_dir, f'ckpt_{t+1}'))
torch.save(model.state_dict(), os.path.join(args.save_dir, 'ckpt_final'))