-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_all_images.py
493 lines (391 loc) · 21.2 KB
/
main_all_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import numpy as np
import cv2
import glob
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import os
from itertools import groupby, islice, cycle
# %matplotlib qt
### helper functions for visualization and saving results ###
def visualize(filename, a):
fig, axes = plt.subplots(2,4,figsize=(24,12),subplot_kw={'xticks':[],'yticks':[]})
fig.subplots_adjust(hspace=0.03, wspace=0.05)
for p in zip(sum(axes.tolist(),[]), a):
p[0].imshow(p[1],cmap='gray')
plt.tight_layout()
fig.savefig(filename)
plt.close()
visualize("output_images/grid_images/images_grid_test.jpg",
(mpimg.imread(f) for f in cycle(glob.glob("test_images/test*.jpg"))))
def plot_all(src, dst, src_title, dst_title):
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
f.tight_layout()
ax1.imshow(src, cmap='gray')
ax1.set_title(src_title, fontsize=50)
ax2.imshow(dst, cmap='gray')
ax2.set_title(dst_title, fontsize=50)
plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
### Camera Calibration ###
#### Compute the camera calibration matrix and distortion coefficients given a set of chessboard images. ####
def get_camera_calibration(img_size):
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('./camera_cal/calibration*.jpg')
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (9,6),None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size,None,None)
return mtx, dist
#### Apply a distortion correction to raw images. ####
def undistort(img):
img_size = (img.shape[1], img.shape[0])
mtx, dist = get_camera_calibration(img_size)
dst = cv2.undistort(img, mtx, dist, None, mtx)
return dst
def apply_distortion_correction():
image_names = os.listdir('./test_images')
i = 0
images = glob.glob('./test_images/*.jpg')
for fname in images:
img = mpimg.imread(fname)
dst = undistort(img)
cv2.imwrite('./output_images/undistorted_images/undist_' + image_names[i] ,dst)
i = i + 1
# plot_all(img, dst, 'Test_image', 'Undistorted Image.')
visualize("output_images/grid_images/images_grid_undistord.jpg",
(mpimg.imread(f) for f in cycle(glob.glob("output_images/undistorted_images/*.jpg"))))
###############################################################################
### Apply a perspective transform to rectify binary image ("birds-eye view"). ###
def measure_warp(img):
top = 0
bottom = img.shape[0]
def handler(e):
if len(src)<4:
plt.axhline(int(e.ydata), linewidth=2, color='r')
plt.axvline(int(e.xdata), linewidth=2, color='r')
src.append((int(e.xdata),int(e.ydata)))
if len(src)==4:
dst.extend([(100,bottom),(100,top),(1180,top),(1180,bottom)])
was_interactive = matplotlib.is_interactive()
if not matplotlib.is_interactive():
plt.ion()
fig = plt.figure()
plt.imshow(img)
global src
global dst
src = []
dst = []
cid1 = fig.canvas.mpl_connect('button_press_event', handler)
cid2 = fig.canvas.mpl_connect('close_event', lambda e: e.canvas.stop_event_loop())
fig.canvas.start_event_loop(timeout=-1)
M = cv2.getPerspectiveTransform((np.asfarray(src, np.float32)), (np.asfarray(dst, np.float32)))
Minv = cv2.getPerspectiveTransform(np.asfarray(dst, np.float32), np.asfarray(src, np.float32))
matplotlib.interactive(was_interactive)
return M, Minv
def save_matrix(M, Minv, name):
np.save('warp_matrix_' + name, M)
np.save('unwarp_matrix_' + name , Minv)
def perspective_transform(img):
img_size = (img.shape[1], img.shape[0])
M, Minv = measure_warp(img)
warped = cv2.warpPerspective(img, M, img_size)
unwarp = cv2.warpPerspective(warped, Minv, img_size)
return warped, unwarp, M, Minv
def apply_perspective_transform():
image_names = os.listdir('./test_images')
i = 0
images = glob.glob('./output_images/undistorted_images/*.jpg')
for fname in images:
img = mpimg.imread(fname)
warped_image, unwarp, M, Minv = perspective_transform(img)
name = image_names[i][:len(image_names[i]) - 4]
save_matrix(M, Minv, name)
cv2.imwrite('./output_images/warped_images/warped_' + image_names[i] ,warped_image)
cv2.imwrite('./output_images/unwarp_images/unwarped_' + image_names[i] ,unwarp)
i = i + 1
plot_all(img, unwarp,'Undistorted Image.', 'Unwarped Grad.')
plot_all(img, warped_image,'Undistorted Image.', 'Warped Grad.')
visualize("output_images/grid_images/images_grid_warped.jpg",
(mpimg.imread(f) for f in cycle(glob.glob("output_images/warped_images/*.jpg"))))
visualize("output_images/grid_images/images_grid_unwarped.jpg",
(mpimg.imread(f) for f in cycle(glob.glob("output_images/unwarp_images/*.jpg"))))
###############################################################################
### Use color transforms, gradients, etc., to create a thresholded binary image. ###
def binary_threshold(img, thresh):
binary = np.zeros_like(img)
binary[(img > thresh[0]) & (img <= thresh[1])] = 1
return binary
def abs_sobel_func(img, orient, sobel_kernel = 3):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sobel = cv2.Sobel(gray, cv2.CV_64F, orient == 'x', orient == 'y', ksize=sobel_kernel)
abs_sobel = np.absolute(sobel)
return abs_sobel
def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(20,100)):
abs_sobel = abs_sobel_func(img, orient, sobel_kernel)
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
sxbinary = binary_threshold(scaled_sobel, thresh)
return sxbinary
def mag_thresh(img, sobel_kernel=9, mag_thresh=(30, 100)):
abs_sobelx = abs_sobel_func(img, 'x', sobel_kernel)
abs_sobely = abs_sobel_func(img, 'y', sobel_kernel)
abs_sobel = np.sqrt(abs_sobelx**2 + abs_sobely**2)
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
mask = binary_threshold(scaled_sobel, mag_thresh)
return mask
def dir_threshold(img, sobel_kernel=15, thresh=(0.7, 1.3)):
abs_sobelx = abs_sobel_func(img, 'x', sobel_kernel)
abs_sobely = abs_sobel_func(img, 'y', sobel_kernel)
dir_gradient = np.arctan2(abs_sobely, abs_sobelx)
binary_output = binary_threshold(dir_gradient, thresh)
return binary_output
def apply_gradian_threshold(image):
ksize = 3
gradx = abs_sobel_thresh(image, orient='x', sobel_kernel=3, thresh=(20, 100))
grady = abs_sobel_thresh(image, orient='y', sobel_kernel=3, thresh=(20, 100))
mag_binary = mag_thresh(image, sobel_kernel=3, mag_thresh=(70, 100))
dir_binary = dir_threshold(image, sobel_kernel=3, thresh=(0.7, 0.9))
grad_binary = np.zeros_like(dir_binary)
# grad_binary[((gradx == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1
grad_binary[(gradx == 1)] = 1
return grad_binary
def apply_color_threshold(img):
r_channel = img[:,:,0]
thresh = (150, 255)
r_binary = binary_threshold(r_channel, thresh)
g_channel = img[:,:,1]
thresh = (200, 255)
g_binary = binary_threshold(g_channel, thresh)
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
thresh = (170, 255)
s_binary = binary_threshold(s_channel, thresh)
yuv = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
u_channel = yuv[:,:,1]
thresh = (0, 0)
u_binary = binary_threshold(u_channel, thresh)
color_binary = np.zeros_like(s_binary)
# color_binary[(s_binary == 1) | (u_binary == 1) | ((r_binary == 1) & (g_binary == 1))] = 1
color_binary[(s_binary == 1) ] = 1
return s_binary
def get_binary_image(img):
gradient_binary = apply_gradian_threshold(img)
color_binary = apply_color_threshold(img)
combined_binary = np.zeros_like(gradient_binary)
combined_binary[(gradient_binary == 1) | (color_binary == 1)] = 1
return combined_binary
def apply_binary_theshold():
image_names = os.listdir('./test_images')
i = 0
images = glob.glob('./output_images/warped_images/*.jpg')
for fname in images:
img = mpimg.imread(fname)
combined_binary = get_binary_image(img)
cv2.imwrite('./output_images/binary_images/binary_' + image_names[i] ,combined_binary)
i = i + 1
plot_all(img, combined_binary,'Warped Image.', 'Thresholded Grad.')
visualize("output_images/grid_images/images_grid_binary.jpg",
(mpimg.imread(f) for f in cycle(glob.glob("output_images/binary_images/*.jpg"))))
###############################################################################
### Detect lane pixels and fit to find the lane boundary. ###
def detect_lines_sliding_window(warped_binary):
histogram = np.sum(warped_binary[warped_binary.shape[0]/2:,:], axis=0)
out_img = np.dstack((warped_binary, warped_binary, warped_binary))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(warped_binary.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = warped_binary.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = warped_binary.shape[0] - (window+1)*window_height
win_y_high = warped_binary.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, 719, 720)
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# out_img[ploty.astype('int'),left_fitx.astype('int')] = [0, 255, 255]
# out_img[ploty.astype('int'),right_fitx.astype('int')] = [0, 255, 255]
y_eval = warped_binary.shape[0]
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
# left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
# right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
# Calculate the new radii of curvature
# left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
# right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# return left_fit, right_fit, np.sqrt(left_fit[1]/len(leftx)), np.sqrt(right_fit[1]/len(rightx)), left_curverad, right_curverad, out_img
# return left_fit, right_fit, np.sqrt(left_fit[1]/len(leftx)), np.sqrt(right_fit[1]/len(rightx)),out_img
return left_fit, right_fit,out_img
def polyfit(window_centroids, ypoint):
ploty = np.array(ypoint)
xp = np.array(window_centroids)
polyfit = np.polyfit(ploty, xp, 2)
#polyfitx = polyfit[0]*ploty**2 + polyfit[1]*ploty + polyfit[2]
return polyfit
def measure_polyfit(window_centroids, ypoint):
ploty = np.array(ypoint)
xp = np.array(window_centroids)
polyfit = np.polyfit(ploty, xp, 2)
#polyfitx = polyfit[0]*ploty**2 + polyfit[1]*ploty + polyfit[2]
return polyfit
def measure_curvature(polyfit, ypoint):
ploty = np.linspace(0, 719, num=720)
A = polyfit[0]
B = polyfit[1]
y_eval = np.max(ploty)
curvature = (1 + (2 * A * y_eval + B) ** 2) ** 1.5 / (2 * np.absolute(A))
return curvature
def measure_curvature_real(polyfit, ypoint):
ym_per_pix = 3./300 # meters per pixel in y dimension
xm_per_pix = 3.7/400 # meters per pixel in x dimension
left_fit_cr = np.polyfit(ploty_l * ym_per_pix, leftx * xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty_r * ym_per_pix, rightx* xm_per_pix , 2)
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval_l*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval_r*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
return left_curverad, right_curverad
def draw_lane(undistorted, warped_binary,newwarp, left_fit, right_fit, Minv):
# Create an image to draw the lines on
warp_zero = np.zeros_like(warped_binary).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
nonzero = warped_binary.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Generate x and y values for plotting
ploty = np.linspace(0, warped_binary.shape[0]-1, warped_binary.shape[0])
left_fitx = left_fit[0]*nonzeroy**2 + left_fit[1]*nonzeroy + left_fit[2]
right_fitx = right_fit[0]*nonzeroy**2 + right_fit[1]*nonzeroy + right_fit[2]
margin = 50
left_lane_inds = ((left_fitx - margin < nonzerox) & (nonzerox < left_fitx + margin))
right_lane_inds = ((right_fitx - margin < nonzerox) & (nonzerox < right_fitx + margin))
## Visualization ##
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((warped_binary, warped_binary, warped_binary))*255
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, nonzeroy]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin,
nonzeroy])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, nonzeroy]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin,
nonzeroy])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
result_line = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
# Draw the lane onto the warped_binary blank image
pts = np.hstack((np.array([np.flipud(np.transpose(np.vstack([left_fitx,
nonzeroy])))]), np.array([np.transpose(np.vstack([right_fitx, nonzeroy]))])))
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
newwarp = cv2.warpPerspective(color_warp, Minv, (undistorted.shape[1], undistorted.shape[0]))
result_lane = cv2.addWeighted(undistorted, 1, newwarp, 0.6, 0)
y_eval = warped_binary.shape[0]
ym_per_pix = 30.0/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(nonzeroy*ym_per_pix, left_fitx*xm_per_pix, 2)
right_fit_cr = np.polyfit(nonzeroy*ym_per_pix, right_fitx*xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
cv2.putText(result_lane, "L. Curvature: %.2f km" % (left_curverad/1000), (50,50), cv2.FONT_HERSHEY_DUPLEX, 1, (255,255,255), 2)
cv2.putText(result_lane, "R. Curvature: %.2f km" % (right_curverad/1000), (50,80), cv2.FONT_HERSHEY_DUPLEX, 1, (255,255,255), 2)
# Annotate image with position estimate
# cv2.putText(result, "C. Position: %.2f m" % ((np.average((l_fitx + r_fitx)/2) - warped_binary.shape[1]//2)*3.7/700), (50,110), cv2.FONT_HERSHEY_DUPLEX, 1, (255,255,255), 2)
return result_lane, result_line, newwarp, color_warp
def draw_lanes():
image_names = os.listdir('./test_images')
binary_images = glob.glob('./output_images/binary_images/*.jpg')
undistorted_images = glob.glob('./output_images/undistorted_images/*.jpg')
unwarped_images = glob.glob('./output_images/unwarp_images/*.jpg')
for i in range(len(image_names)):
warped_binary = cv2.imread(binary_images[i], cv2.IMREAD_GRAYSCALE)
undistorted = cv2.imread(undistorted_images[i])
unwarp = cv2.imread(unwarped_images[i])
l_fit, r_fit, out_img = detect_lines_sliding_window(warped_binary)
plot_all(undistorted, out_img,'undistorted.', 'sliding window.')
name = image_names[i][:len(image_names[i]) - 4]
Minv = np.load('unwarp_matrix_' + name + '.npy' )
lane_image, line_image, newwarp, color_warp = draw_lane(undistorted, warped_binary,unwarp, l_fit, r_fit, Minv)
cv2.imwrite('./output_images/lane_images/lane_' + image_names[i] ,lane_image)
cv2.imwrite('./output_images/line_images/line_' + image_names[i] ,line_image)
cv2.imwrite('./output_images/sliding_window_images/window_' + image_names[i] ,out_img)
plot_all(line_image, lane_image,'warped_binary.', 'lane_image.')
visualize("output_images/grid_images/images_grid_lane.jpg", (mpimg.imread(f) for f in cycle(glob.glob("output_images/lane_images/*.jpg"))))
visualize("output_images/grid_images/images_grid_line.jpg",(mpimg.imread(f) for f in cycle(glob.glob("output_images/line_images/*.jpg"))))
visualize("output_images/grid_images/images_grid_sliding_window.jpg",(mpimg.imread(f) for f in cycle(glob.glob("output_images/sliding_window_images/*.jpg"))))
# Apply a distortion correction to raw images.
# Compute the camera calibration matrix and distortion coefficients given a set of chessboard images.
# Apply a distortion correction to raw images.
apply_distortion_correction()
# Apply a perspective transform to rectify binary image ("birds-eye view").
apply_perspective_transform()
# Use color transforms, gradients, etc., to create a thresholded binary image.
apply_binary_theshold()
# Detect lane pixels and fit to find the lane boundary.
# Determine the curvature of the lane and vehicle position with respect to center.
# Warp the detected lane boundaries back onto the original image.
# Output visual display of the lane boundaries and numerical estimation of lane curvature and vehicle position.
draw_lanes()