-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML basics.py
96 lines (77 loc) · 2.77 KB
/
ML basics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
np.random.seed(101)
tf.set_random_seed(101)
# Genrating random linear data
# There will be 50 data points ranging from 0 to 50
x = np.linspace(0, 50, 50)
# Adding noise to the random linear data
x += np.random.uniform(-4, 4, 50)
'''
line_1:
Now generate the value of Y randomly from standard normal distribution.
Make sure the shape of X and Y are same
'''
y=np.linspace(-2,2,50)
y+=tp.random.normal(-4,4,50)
n = len(x) # Number of data points
# Plot of Training Data
plt.scatter(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title("Training Data")
plt.show()
X = tf.placeholder("float")
Y = tf.placeholder("float")
W = tf.Variable(np.random.randn(), name = "W")
b = tf.Variable(np.random.randn(), name = "b")
'''
line_2 & line_3 :
Now , create two variables named learning_rate and training_epochs and set some value.
First assign learning rate as 0.01 and training epochs as 1000
line_4:
declare the hypothesis line as
y_pred= X*W + b
use tensorflow (tf) to add and mutiply
line_5:
Declare the cost function as mean squared error of y_pred and Y as
1 2
cost = --- [ sum of ( y_pred - Y ) ]
2n
Use tf.reduce_sum and tf.pow
'''
learning_rate = 0.01
training_epochs = 1000
y_pred = tf.add(tf.multiply(X,W),b)
cost=tf.reduce_sum(tf.pow(y_pred-Y,2))/(2*n)
# Gradient Descent Optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Global Variables Initializer
init = tf.global_variables_initializer()
# Starting the Tensorflow Session
with tf.Session() as sess:
sess.run(init)
# Iterating through all the epochs
for epoch in range(training_epochs):
# Feeding each data point into the optimizer using Feed Dictionary
for (_x, _y) in zip(x, y):
sess.run(optimizer, feed_dict = {X : _x, Y : _y})
# Displaying the result after every 50 epochs
if (epoch + 1) % 50 == 0:
# Calculating the cost a every epoch
c = sess.run(cost, feed_dict = {X : x, Y : y})
print("Epoch", (epoch + 1), ": cost =", c, "W =", sess.run(W), "b =", sess.run(b))
# Storing necessary values to be used outside the Session
training_cost = sess.run(cost, feed_dict ={X: x, Y: y})
weight = sess.run(W)
bias = sess.run(b)
# Calculating the predictions
predictions = weight * x + bias
print("Training cost =", training_cost, "Weight =", weight, "bias =", bias, '\n')
# Plotting the Results
plt.plot(x, y, 'ro', label ='Original data')
plt.plot(x, predictions, label ='Fitted line')
plt.title('Linear Regression Result')
plt.legend()
plt.show()