-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patht_weight.py
33 lines (31 loc) · 1.04 KB
/
t_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd;
df=pd.read_csv(' t-weight.csv',names=['A','B'])
data=df.values.tolist()
c1_tot=0
c2_tot=0
r1_tot=0
r2_tot=0
for i in range(2):
for j in range(2):
if(i==0):
r1_tot=r1_tot+(int)(data[i][j])
if(i==1):
r2_tot=r2_tot+(int)(data[i][j])
if(j==0):
c1_tot=c1_tot+(int)(data[i][j])
if(j==1):
c2_tot=c2_tot+(int)(data[i][j])
print("row 1 total:"+r1_tot)
print("row 2 total:"+r2_tot)
print("col 1 total:"+c1_tot)
print("col 2 total:"+c2_tot)
for i in range (2):
for j in range (2):
if(i==0):
print("t-weight for data"+(str)(data[i][j])+"is--->"+(float)(((data[i][j])/r1_tot))*100)
if(i==1):
print("t-weight for data"+(str)(data[i][j])+"is--->"+(float)(((data[i][j])/r2_tot))*100)
if(j==0):
print("d-weight for data"+(str)(data[i][j])+"is--->"+(float)(((data[i][j])/c1_tot))*100)
if(j==1):
print("d-weight for data"+(str)(data[i][j])+"is--->"+(float)(((data[i][j])/c2_tot))*100)