Skip to content

Latest commit

 

History

History
150 lines (126 loc) · 3.67 KB

notes.md

File metadata and controls

150 lines (126 loc) · 3.67 KB

Multimodal Sensors Project Notes

Song Sibo (Email:[email protected])

List of activities

  1. walking
  2. walking upstairs
  3. walking downstairs
  4. riding elevator up
  5. riding elevator down
  6. riding escalaator down
  7. riding escalaator up
  8. sitting
  9. eating
  10. drinking
  11. texting
  12. making phone calls
  13. working at PC
  14. reading
  15. writing sentences
  16. organizing files
  17. running
  18. doing push-ups
  19. doing sit-ups
  20. cycling

Categories of activities

Ambulation

  1. walking
  2. walking upstairs
  3. walking downstairs
  4. riding elevator up
  5. riding elevator down
  6. riding escalaator down
  7. riding escalaator up
  8. sitting

Daily activities

  1. eating
  2. drinking
  3. texting
  4. making phone calls

Office work

  1. working at PC
  2. reading
  3. writing sentences
  4. organizing files

Exercise/fitness

  1. running
  2. doing push-ups
  3. doing sit-ups
  4. cycling

Sensor Data format

  • Brown Glass:

    • 21 dimension: Date, Timestamp, Accelerometer1, Accelerometer2, Accelerometer3, Gravity1, Gravity2, Gravity3, Gyroscope1, Gyroscope2, Gyroscope3, LinearAcceleration1, LinearAcceleration2, LinearAcceleration3, MagneticField1, MagneticField2, MagneticField3, RotationVector1, RotationVector2, RotationVector3, RotationVector4
    • Sampling rate: 30Hz
  • Black Glass:

    • 27 dimension: Date, Timestamp, Accelerometer1, Accelerometer2, Accelerometer3, Gravity1, Gravity2, Gravity3, Gyroscope1, Gyroscope2, Gyroscope3, Light, LinearAcceleration1, LinearAcceleration2, LinearAcceleration3, MagneticField1, MagneticField2, MagneticField3, RotationVector1, RotationVector2, RotationVector3, RotationVector4, Latitude, Longitude, Altitude, Bearing, Speed
    • Sampling rate: 10Hz

Dataset

Pipeline

  • Video data processing:

    • Downsample the videos
    • Generate trajectory features
    • Sample ten percent data to form the codebook
    • Build Guassian Mixure Model (GMM)
    • Generate fisher vector
    • Classify fisher vectors using SVM
  • Sensor data processing:

    • Use sliding windows to pre-process the data
    • Sample ten percent data to form the codebook
    • Build Guassian Mixure Model (GMM)
    • Generate fisher vector
    • Classify fisher vectors using SVM

Running time

  • Trajectory Feature Extraction:
    • type = video, size = 320x180, fps = 10: 1:30:00, (5400s)
    • type = video, size = 430x240, fps = 15: 2:27:53, (8873s)
  • Fisher Vector Generation
    • type = video, size = 320x180, fps = 10: 1:26:19
    • type = video, size = 430x240, fps = 15:

Experiment

  • Sensor data:

    • data dimension: 19 (after removing Data, Timestamp)
    • parameter:
      • Window size: 10
      • PCA dimensionality reduction: from 190 to 95
      • Fisher Vector:
        • k = 25
        • number of samples: k*100 = 2500
        • fisher vector dimension: 2kd = 4750
      • SVM:
        • C = 10
        • Cross-validation: training set(90%), test set(10%)
        • Times: 100
  • Video data:

    • data dimension: 426
    • parameter:
      • PCA dimensionality reduction: from 426 to 213
      • Fisher Vector:
        • k = 25
        • number of samples: 1 percent
        • fisher vector dimension: 2kd = 10650
      • SVM:
        • C = 10
        • Cross-validation: training set(90%), test set(10%)
        • Times: 100

Results

  • Sensor data
    • Overall accuracy:
      • Linear SVC: 0.42
    • Confusion matrix

cm_sensor

  • Video data
    • Overall accuracy:
      • Linear SVC: 0.7975
    • Confusion matrix

cm_video

  • All data
    • Overall accuracy:
      • Linear SVC: 0.792
    • Confusion matrix

cm_all