diff --git a/examples/Distributions/EquiprobableLognormal.ipynb b/examples/Distributions/EquiprobableLognormal.ipynb index 56b5bac6a..4e7eea119 100644 --- a/examples/Distributions/EquiprobableLognormal.ipynb +++ b/examples/Distributions/EquiprobableLognormal.ipynb @@ -139,8 +139,8 @@ "1.0000000002309708\n", "1.0000000000008682\n", "0.9999999999848911\n", - "CPU times: total: 781 ms\n", - "Wall time: 2.32 s\n" + "CPU times: total: 625 ms\n", + "Wall time: 2.33 s\n" ] } ], @@ -172,24 +172,20 @@ "metadata": {}, "outputs": [ { - "ename": "ValueError", - "evalue": "This method is only implemented for bivariate distributions. For general distributions, use the approx_equiprobable method instead.", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "File \u001b[1;32m:3\u001b[0m\n", - "File \u001b[1;32mc:\\Users\\sidda\\OneDrive\\Ashoka\\RA\\EconARK\\Repo\\HARK\\HARK\\distribution.py:1012\u001b[0m, in \u001b[0;36mMVLogNormal.bv_approx_equiprobable\u001b[1;34m(self, N)\u001b[0m\n\u001b[0;32m 996\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 997\u001b[0m \u001b[38;5;124;03mMakes a discrete approximation using the equiprobable method to this bivariate lognormal distribution.\u001b[39;00m\n\u001b[0;32m 998\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1008\u001b[0m \u001b[38;5;124;03m points for discrete probability mass function.\u001b[39;00m\n\u001b[0;32m 1009\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1011\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mM \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m2\u001b[39m:\n\u001b[1;32m-> 1012\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 1013\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThis method is only implemented for bivariate distributions. For general distributions, use the approx_equiprobable method instead.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1014\u001b[0m )\n\u001b[0;32m 1016\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m np\u001b[38;5;241m.\u001b[39marray_equal(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mSigma, np\u001b[38;5;241m.\u001b[39mdiag(np\u001b[38;5;241m.\u001b[39mdiag(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mSigma))):\n\u001b[0;32m 1017\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mSigma[\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0.0\u001b[39m:\n", - "\u001b[1;31mValueError\u001b[0m: This method is only implemented for bivariate distributions. For general distributions, use the approx_equiprobable method instead." + "name": "stdout", + "output_type": "stream", + "text": [ + "This method is only implemented for bivariate distributions. For general distributions, use the approx_equiprobable method instead.\n" ] } ], "source": [ "N = 10\n", "\n", - "X_approx = X.bv_approx_equiprobable(N)\n", - "\n", - "X_approx.expected()" + "try:\n", + " X_approx = X.bv_approx_equiprobable(N)\n", + "except Exception as e:\n", + " print(e)" ] }, { @@ -208,8 +204,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: total: 15.6 ms\n", - "Wall time: 78.2 ms\n" + "CPU times: total: 31.2 ms\n", + "Wall time: 91.6 ms\n" ] }, {