-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfeature_imp.py
120 lines (88 loc) · 4.36 KB
/
feature_imp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from utils.data_preprocess import generate_final_training_dataset
from logger import Logger
import pickle as pkl
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
def calculate_feats_importance(model, ensemble_names, feats_names, data_type, logger):
logger.log("Calculate feature importance for {} data on {}".format(data_type, ensemble_names))
if len(ensemble_names) > 1:
clf1_scores = model.estimators_[0].feature_importances_
clf2_scores = model.estimators_[1].feature_importances_
clf1_scores = clf1_scores[: - int(logger.config_dict['EMB_SIZE'])]
clf2_scores = clf2_scores[: - int(logger.config_dict['EMB_SIZE'])]
clf1_scores /= clf1_scores.max()
clf2_scores /= clf2_scores.max()
scores = np.stack([clf1_scores, clf2_scores])
else:
clf_scores = model.feature_importances_
clf_scores = clf_scores[: - int(logger.config_dict['EMB_SIZE'])]
clf_scores /= clf_scores.max()
scores = np.stack([clf_scores])
results_df = pd.DataFrame(scores, columns = feats_names, index = ensemble_names)
results_df.index.name = "Estimator"
feats_imp_path = logger.get_output_file(data_type + "_feats_imp.csv")
logger.log("Save feature importance scores in {}".format(feats_imp_path))
results_df.to_csv(feats_imp_path)
def make_feats_importance_barplot(feats_imp_filename, plot_filename,
num_feats_to_plot, logger):
fig = plt.figure(figsize=(8, 10))
sns.set()
df = pd.read_csv(logger.get_output_file(feats_imp_filename))
model1_feats_imp_scores = df.iloc[0, 1:]
if len(df) > 1:
model2_feats_imp_scores = df.iloc[1, 1:]
model1_name_score_pairs = list(zip(df.columns[1:], model1_feats_imp_scores))
if len(df) > 1:
model2_name_score_pairs = list(zip(df.columns[1:], model2_feats_imp_scores))
model1_name_score_pairs = sorted(model1_name_score_pairs, key=lambda tup: tup[1], reverse = True)
if len(df) > 1:
model2_name_score_pairs = sorted(model2_name_score_pairs, key=lambda tup: tup[1], reverse = True)
model1_names, model1_scores = zip(*model1_name_score_pairs)
if len(df) > 1:
model2_names, model2_scores = zip(*model2_name_score_pairs)
model1_scores = [dict(model1_name_score_pairs)[name] for name in model2_names]
model1_names = model1_names[:num_feats_to_plot]
if len(df) > 1:
model2_names = model2_names[:num_feats_to_plot]
model1_scores = model1_scores[:num_feats_to_plot]
if len(df) > 1:
model2_scores = model2_scores[:num_feats_to_plot]
x_range = np.array(range(len(model1_names)))
plt.yticks(fontsize = 15)
plt.ylabel("Relative importance score", fontsize = 18)
if len(df) > 1:
plt.bar(x_range, model2_scores, width = 0.4, color = 'red')
plt.xticks(x_range, model2_names, rotation = 90, fontsize = 16)
plt.bar(x_range + 0.4, model1_scores, width = 0.4, color = 'blue')
plt.legend(["XGBoost", "AdaBoost"], fontsize = 16)
else:
plt.bar(x_range, model1_scores, width = 0.6, color = 'red')
plt.xticks(x_range, model1_names, rotation = 90, fontsize = 16)
plt.legend(["Randon Forest"], fontsize = 16)
plt.savefig(logger.get_output_file(plot_filename), dpi = 120, fontsize = 16, bbox_inches='tight')
plt.close()
# "compute", "plot"
MODE = "plot"
if __name__ == '__main__':
logger = Logger(show = True, html_output = True, config_file = "config.txt")
if MODE == "compute":
df = generate_final_training_dataset("small", logger)
feats_names = df.columns.values
feats_names = feats_names[:-2]
feats_names = feats_names[: - int(logger.config_dict['EMB_SIZE'])]
logger.log("Loading best small model RandF...")
small_model_path = logger.get_model_file(logger.config_dict['SMALL_BEST'], "small")
with open(small_model_path, "rb") as fp:
small_best_model = pkl.load(fp)
logger.log("Loading best large model Ada + XGB...")
large_model_path = logger.get_model_file(logger.config_dict['LARGE_BEST'], "large")
with open(large_model_path, "rb") as fp:
large_best_model = pkl.load(fp)
calculate_feats_importance(small_best_model, ["RandF"], feats_names, "small", logger)
calculate_feats_importance(large_best_model, ["Ada", "XGB"], feats_names, "large", logger)
elif MODE == "plot":
make_feats_importance_barplot("small_feats_imp.csv", "small_feats_imp_plot.jpg", 10, logger)
make_feats_importance_barplot("large_feats_imp.csv", "large_feats_imp_plot.jpg", 6, logger)