-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataloader.py
177 lines (151 loc) · 6.6 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import spacy
from konlpy.tag import Mecab
import torch
import torchtext.datasets as datasets
from torchtext import datasets
from torchtext.data import Field, BucketIterator, TabularDataset
from torchtext.datasets import TranslationDataset
from pathlib import Path
class KoEn(TranslationDataset):
"""ref: https://github.com/jungyeul/korean-parallel-corpora"""
urls = []
name = 'koen'
dirname = ''
@classmethod
def splits(cls, exts, fields, root='./data/korean-parallel-corpora',
train='korean-english-park.train',
validation='korean-english-park.dev',
test='korean-english-park.test', **kwargs):
"""
Create dataset objects for splits of the KO-EN translation dataset.
Arguments:
exts: A tuple containing the extensions for each language. Must be
either ('.ko', '.en') or the reverse.
fields: A tuple containing the fields that will be used for data
in each language.
root: Root dataset storage directory. Default is '.data'.
train: The prefix of the train data.
validation: The prefix of the validation data.
test: The prefix of the test data.
Remaining keyword arguments: Passed to the splits method of
Dataset.
"""
if 'path' not in kwargs:
expected_folder = Path(root).joinpath(cls.name)
path = str(expected_folder) if expected_folder.exists() else None
else:
path = kwargs['path']
del kwargs['path']
return super(KoEn, cls).splits(
exts, fields, path, root, train, validation, test, **kwargs)
class SplitReversibleField(Field):
"""ref: http://anie.me/On-Torchtext/"""
def __init__(self, **kwargs):
if kwargs.get('tokenize') is list:
self.use_revtok = False
else:
self.use_revtok = True
if kwargs.get('tokenize') not in ('revtok', 'subword', list):
kwargs['tokenize'] = 'revtok'
if 'unk_token' not in kwargs:
kwargs['unk_token'] = ' <unk> '
super(SplitReversibleField, self).__init__(**kwargs)
def reverse(self, batch):
if self.use_revtok:
try:
import revtok
except ImportError:
print("Please install revtok.")
raise
if not self.batch_first:
batch = batch.t()
with torch.cuda.device_of(batch):
batch = batch.tolist()
batch = [[self.vocab.itos[ind] for ind in ex] for ex in batch] # denumericalize
def trim(s, t):
sentence = []
for w in s:
if w == t:
break
sentence.append(w)
return sentence
batch = [trim(ex, self.eos_token) for ex in batch] # trim past frst eos
def filter_special(tok):
return tok not in (self.init_token, self.pad_token)
batch = [filter(filter_special, ex) for ex in batch]
if self.use_revtok:
return [revtok.detokenize(ex) for ex in batch]
return [' '.join(ex) for ex in batch]
def get_data(args):
# batch
batch_size = args.batch
device = "cuda" if (torch.cuda.is_available() and args.use_cuda) else "cpu"
spacy_de = spacy.load('de')
spacy_en = spacy.load('en')
# set up tokenizer
def tokenize_de(text):
return [tok.text for tok in spacy_de.tokenizer(text)]
def tokenize_en(text):
return [tok.text for tok in spacy_en.tokenizer(text)]
tokenize_ko = Mecab().morphs
tokenizer_dict = {"en-de": {"src": tokenize_en, "trg": tokenize_de},
"ko-en": {"src": tokenize_ko, "trg": tokenize_en}}
if args.data_type in ["multi30k", "wmt14", "iswlt"]:
tokenize_src = tokenizer_dict["en-de"]["src"]
tokenize_trg = tokenizer_dict["en-de"]["trg"]
elif args.data_type in ["koen"]:
tokenize_src = tokenizer_dict["ko-en"]["src"]
tokenize_trg = tokenizer_dict["ko-en"]["trg"]
else:
assert False, "error"
# set up fields
src = SplitReversibleField(tokenize=tokenize_src,
use_vocab=True,
lower=True,
include_lengths=False,
fix_length=args.max_length, # fix max length
batch_first=True)
trg = SplitReversibleField(tokenize=tokenize_trg,
use_vocab=True,
init_token='<s>',
eos_token='</s>',
lower=True,
fix_length=args.max_length, # fix max length
batch_first=True)
if args.data_type == "multi30k":
# make splits for data
train, valid, test = datasets.Multi30k.splits(('.en', '.de'),
(src, trg),
root=args.root_dir)
# build the vocabulary
src.build_vocab(train.src, min_freq=args.min_freq)
trg.build_vocab(train.trg, min_freq=args.min_freq)
elif args.data_type == "wmt14":
# make splits for data
train, valid, test = datasets.WMT14.splits(('.en', '.de'),
(src, trg),
root=args.root_dir)
# build the vocabulary
src.build_vocab(train.src, min_freq=args.min_freq)
trg.build_vocab(train.trg, min_freq=args.min_freq)
elif args.data_type == "iswlt":
# make splits for data
train, valid, test = datasets.IWSLT.splits(('.en', '.de'),
(src, trg),
root=args.root_dir)
# build the vocabulary
src.build_vocab(train.src, min_freq=args.min_freq)
trg.build_vocab(train.trg, min_freq=args.min_freq)
elif args.data_type == "koen":
# make splits for data
train, valid, test = KoEn.splits(('.ko', '.en'),
(src, trg),
root=args.root_dir)
# build the vocabulary
src.build_vocab(train.src, min_freq=args.min_freq)
trg.build_vocab(train.trg, min_freq=args.min_freq)
else:
assert False, "Please Insert data_type"
# make iterator for splits
train_iter, valid_iter, test_iter = BucketIterator.splits((train, valid, test), batch_sizes=([batch_size]*3), device=device)
return (src, trg), (train, valid, test), (train_iter, valid_iter, test_iter)