-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_biasnet.py
558 lines (434 loc) · 20 KB
/
run_biasnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# *******************************************************#
# Author: Govinda KC - UTEP, Computational Science #
# Code developed in Sirimulla Research Group #
# (http://sirimullaresearchgroup.com/) #
# Last modified:10/25/2021 #
# *******************************************************#
# Usage: python run_biasnet.py --smiles SMILES ( eg. python run_biasnet.py --smiles "CC(O)CO" )
import os, joblib, json,sys,re,time,argparse,logging
import argparse
from tqdm import tqdm
from features import FeaturesGeneration
from pprint import pprint
from rdkit import Chem
import rdkit
from rdkit.DataStructs.cDataStructs import TanimotoSimilarity
from collections import OrderedDict
from rdkit.Chem.SaltRemover import SaltRemover
from rdkit.Chem.MolStandardize import rdMolStandardize
from rdkit.Chem import MolStandardize
import warnings
warnings.simplefilter("ignore", UserWarning)
warnings.simplefilter("ignore", FutureWarning)
warnings.simplefilter("ignore", DeprecationWarning)
import pickle
from glob import glob
import numpy as np
import multiprocessing as mp
from time import time
from time import sleep
from requests import get
from random import randint
from datetime import datetime
from urllib import parse
import subprocess
import pandas as pd
from rdkit.Chem import Descriptors
from rdkit.Chem.rdMolDescriptors import CalcMolFormula
from pubchempy import Compound, get_compounds, get_synonyms
from func_timeout import func_timeout, FunctionTimedOut
import pandas as pd
import rdkit, shutil
from rdkit.Chem import SmilesMolSupplier, SDMolSupplier, SDWriter, SmilesWriter, MolStandardize, MolToSmiles, MolFromSmiles
import tempfile
pubchem_time_limit = 30 # in seconds
ochem_api_time_limit = 20 # in seconds
def Standardize(stdzr, remove_isomerism, molReader, molWriter):
n_mol=0;
for mol in molReader:
n_mol+=1
molname = mol.GetProp('_Name') if mol.HasProp('_Name') else ''
logging.debug('%d. %s:'%(n_mol, molname))
mol2 = StdMol(stdzr, mol, remove_isomerism)
output = rdkit.Chem.MolToSmiles(mol2, isomericSmiles=True) if mol2 else None
return output
#############################################################################
def MyNorms():
norms = list(MolStandardize.normalize.NORMALIZATIONS)
for i in range(len(norms)-1, 0, -1):
norm = norms[i]
if norm.name == "Sulfoxide to -S+(O-)-":
del(norms[i])
norms.append(MolStandardize.normalize.Normalization("[S+]-[O-] to S=O",
"[S+:1]([O-:2])>>[S+0:1](=[O-0:2])"))
logging.info("Normalizations: {}".format(len(norms)))
return(norms)
#############################################################################
def MyStandardizer(norms):
stdzr = MolStandardize.Standardizer(
normalizations = norms,
max_restarts = MolStandardize.normalize.MAX_RESTARTS,
prefer_organic = MolStandardize.fragment.PREFER_ORGANIC,
acid_base_pairs = MolStandardize.charge.ACID_BASE_PAIRS,
charge_corrections = MolStandardize.charge.CHARGE_CORRECTIONS,
tautomer_transforms = MolStandardize.tautomer.TAUTOMER_TRANSFORMS,
tautomer_scores = MolStandardize.tautomer.TAUTOMER_SCORES,
max_tautomers = MolStandardize.tautomer.MAX_TAUTOMERS
)
return(stdzr)
#############################################################################
def StdMol(stdzr, mol, remove_isomerism=False):
smi = MolToSmiles(mol, isomericSmiles=(not remove_isomerism)) if mol else None
mol_std = stdzr.standardize(mol) if mol else None
smi_std = MolToSmiles(mol_std, isomericSmiles=(not remove_isomerism)) if mol_std else None
logging.debug(f"{smi:>28s} >> {smi_std}")
return(mol_std)
#############################################################################
def preprocess_smi(smi):
norms = MolStandardize.normalize.NORMALIZATIONS
test_smiles = [smi]
test_label = [1] # dummy list
temp_dir = tempfile.mkdtemp()
df = pd.DataFrame(zip(test_smiles, test_label), columns=['SMILES', 'Label'])
df.to_csv(temp_dir+'/temp_file.csv', index=False)
try:
molReader = SmilesMolSupplier(temp_dir+'/temp_file.csv', delimiter=',', smilesColumn=0, nameColumn=1, titleLine=True, sanitize=True)
molWriter = SmilesWriter(temp_dir+'/temp_outfile.csv', delimiter=',', nameHeader='Name',
includeHeader=True, isomericSmiles = (True), kekuleSmiles=False)
stdzr = MyStandardizer(norms)
stand_smiles = Standardize(stdzr, True, molReader, molWriter)
shutil.rmtree(temp_dir)
return stand_smiles
except:
return None
class biasNet:
MODELS_DIR = os.path.join('models')
def __init__(self):
self.check_smiles()
self.load_models()
def check_smiles(self):
mol = Chem.MolFromSmiles(input_smiles)
if len(input_smiles) == 0:
print(f'Given SMILES: {input_smiles} can not be Predicted')
exit(1)
elif not mol:
print(f'Given SMILES: {input_smiles} can not be Predicted')
exit(1)
def load_models(self):
with open('models.txt', 'r') as f:
models = f.read().splitlines()
self.model_names = [model_path.split('_')[0] for model_path in models]
self.models = [joblib.load(os.path.join(self.MODELS_DIR, model_path)) for model_path in models]
def predict(self, smiles):
fg = FeaturesGeneration()
features = fg.get_fingerprints(smiles)
final_results = {}
model_result = {}
# First index -> probability that the data belong to class 0,
# Second index -> probability that the data belong to class 1.
for model_name, model in tqdm(zip(self.model_names, self.models)):
label_zero = model.predict_proba(features)[0][0].round(3)
label_one = model.predict_proba(features)[0][1].round(3)
if label_one >= 0.5:
model_result['Prediction'] = 'B-Arrestin'
model_result['Confidence'] = label_one
model_result['GPCR_Prediction'] = 'Non-GPCR'
else:
model_result['Prediction'] = 'G-Protein'
model_result['Confidence'] = label_zero
model_result['GPCR_Prediction'] = 'GPCR'
final_results[smiles] = model_result
print('Final results: ', final_results)
with open('biasnet_results.json', 'w') as json_file:
json.dump(final_results, json_file, indent=4)
print('Result file is saved')
#########################----GET OCHEM API RESULTS-------###################################
class OchemAPIResults:
# Ochem URL
'''
http://rest.ochem.eu/
http://rest.ochem.eu/predict?MODELID=536&SMILES=Cc1ccccc1
'''
def get_ochem_model_results(self, smiles, model_id):
try:
d = func_timeout(ochem_api_time_limit, self.fetch_ochem, args=(smiles, model_id))
if d[smiles]['response_code'] == 200:
if model_id == 535: # logp
_val = str(d[smiles]['results']['logPow']['value'])
return _val
elif model_id == 536: # logs
_val = str(d[smiles]['results']['Aqueous Solubility']['value'])
return _val
else:
return '-'
except:
return '-'
def save_file(self, smi_dict, model_id, save_dir, i, res_code):
save_path = save_dir + '/smi_' + str(i + 1) + '-response_code_' + str(res_code) \
+ '-model_id_' + str(model_id) + '.json'
with open(save_path, 'w') as f:
json.dump(smi_dict, f, indent=4)
def fetch_ochem(self, smiles, model_id, save_dir=None):
# datetime object containing current date and time
now = datetime.now()
error_codes = [401, 400, 404]
requests = 0
start_time = time()
total_runtime = datetime.now()
smi_dict = {}
s_time = time()
# SMILES needs to be of HTML format! That's why below line exists-->
url_smi = parse.quote(smiles)
smi_dict[smiles] = {'results': -1, 'response_code': -1, 'time_taken': -1,
'model_id': -1, 'short_error': -1, 'long_error': -1}
# if i % 10 == 0:
# print('sleeping for 1 min....')
# sleep(randint(60, 80))
try:
#######<GET RESPONSE/>#######
response = get("http://rest.ochem.eu/predict?MODELID={0}&SMILES={1}".format(model_id, url_smi))
# Monitor the frequency of requests
requests += 1
# Pauses the loop between 2 - 4 seconds and marks the elapsed time
sleep(randint(2, 4))
current_time = time()
elapsed_time = current_time - start_time
print("===================<OchemAPI_RESPONSE>========================")
print("Total Request:{}; Frequency: {} request/s; Total Run Time: {}".format(requests,
requests / elapsed_time,
datetime.now() - total_runtime))
# clear_output(wait=True)
print("Response Code: ", response.status_code)
# Throw a warning for non-200 status codes
if response.status_code in error_codes:
smi_dict[smiles].update({'results': json.loads(response.text),
'response_code': int(response.status_code),
'time_taken': round((time() - s_time), 3),
'model_id': model_id, 'short_error': 'ERROR',
'long_error': str(response.text)})
return smi_dict
# save_file(smi_dict, model_id, save_dir, i, response.status_code)
if response.status_code == 206 or response.status_code == 200:
while (response.status_code == 206):
response = get("http://rest.ochem.eu/predict?MODELID={0}&SMILES={1}".format(model_id, url_smi))
# Pauses the loop between 1 - 2 seconds
sleep(randint(1, 2))
# If results are not ready, then continue
if response.text == 'not yet ready':
print('ochem api results --> not yet ready')
continue
# If error in results, then break
if response.status_code in error_codes:
break
if response.status_code == 200:
err_code = None
else:
err_code = 'ERROR'
smi_dict[smiles].update({'results': json.loads(response.text),
'response_code': int(response.status_code),
'time_taken': round((time() - s_time), 3),
'model_id': model_id, 'short_error': err_code})
return smi_dict
except Exception as e:
smi_dict[smiles].update({'short_error': str(e.__class__.__name__),
'long_error': str(e),
'time_taken': round((time() - s_time), 3)})
return smi_dict
#########<OCHEM ALOGPS CALCULATIONS [NOTE: can only be EXECUTED FROM VIA A LINUX MACHINE!]>#########
# USE DOCKER FOR BELOW TASK -->
class OchemToolALOGPS:
def calculate_alogps(self, smi):
cmd = ['./alogps-linux','--smiles', smi]
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, error = p.communicate()
return out, error
###############<FETCH PHYSICO CHEMICAL PROPERTIES>###########################
# Takes input as smiles
class FetchPhysicoProperty:
# Get molecular weight of smiles string
def get_molecular_wt(self, smi):
try:
m = Chem.MolFromSmiles(smi)
return round(Descriptors.MolWt(m), 2)
except:
return '-'
# Get molecular formula of smiles string
def get_molecular_formula(self, smi):
try:
m = Chem.MolFromSmiles(smi)
return CalcMolFormula(m)
except:
'-'
################################################################################
###############<FETCH ATTRIBUTES FROM CHEMICAL DATABASES, USING APIS / OTHER>###########################
# Takes input as smiles
class FetchChemoDB:
# Convert to Canonical Smiles
def get_canonical(self, smi):
try:
mol = Chem.MolFromSmiles(smi)
can_smi = Chem.MolToSmiles(mol, True)
return can_smi
except:
return None
# Fetch Pubchem results
def fetch_pubchem(self, smi):
can_smi = self.get_canonical(smi)
if can_smi == None:
return '-', '-'
try:
# func_timeout runs for a certain time period. If results not returned in that time, it breaks
# refer - https://pypi.org/project/func-timeout/
r = func_timeout(pubchem_time_limit, get_compounds, args=(smi, 'smiles'))
# r = get_compounds(smi, 'smiles')
_cid = r[0].cid
return 'https://pubchem.ncbi.nlm.nih.gov/compound/' + str(_cid), _cid
except:
return '-', '-'
# Fetch DrugCentral results
def fetch_drug_central(self, smi, _input):
can_smi = self.get_canonical(smi)
if can_smi == None:
return '-', '-'
# Read csv
#df = pd.read_csv('drug_central_drugs.csv')
df = pd.read_csv('drug_central_drugs-stand.csv')
### added by GK ###
dc_dictn = dict(zip(df.ID, df.INN_cleaned))
dc_dictn_inn = dict(zip(df.INN_cleaned, df.Canonical_Smiles))
##################-----------################
try:
# Check if query canonical smi matches with canonical smi in drugCentral db
dc_id = df[df.Canonical_Smiles == can_smi]['ID'].values[0]
dc_name = dc_dictn[dc_id] # added by gK
dc_smiles_stand = dc_dictn_inn[dc_name]
return 'http://drugcentral.org/drugcard/' + str(dc_id), dc_id, dc_name, dc_smiles_stand # dc_name added by gk
except:
try:
# Convert to string
_input = str(_input)
# Convert to lowercase
_input = _input.lower()
# Remove leading and trailing spaces
_input = _input.strip()
# Matching query drug_name with that present in drugCentral db
dc_id = df[df.INN_cleaned == _input]['ID'].values[0]
dc_name = dc_dictn[dc_id] # added by Gk
dc_smiles_stand = dc_dictn_inn[dc_name]
return 'http://drugcentral.org/drugcard/' + str(dc_id), dc_id, dc_name, dc_smiles_stand # dc_name, dc_smiles_stand added by gk
except:
return '-', '-', '-', '-' # added '-' by gk
################################################################################
###############<CHECK INPUT TYPE>###########################
class CheckInput:
# Convert to Canonical Smiles
def get_canonical(self, smi):
try:
if len(smi) == 0:
return None
mol = Chem.MolFromSmiles(smi)
can_smi = Chem.MolToSmiles(mol, True)
return can_smi
except:
return None
def check_input(self, _input):
smi_flag = False
drug_name_flag = False
pubchem_cid_flag = False
# First, check if canonical
can_smi = self.get_canonical(_input)
if can_smi != None:
smi_flag = True
try:
drug_name = func_timeout(pubchem_time_limit, get_synonyms, args=(can_smi, 'smiles'))
if not drug_name:
drug_name = '-'
elif len(drug_name[0]['Synonym']) == 1:
drug_name = str(drug_name[0]['Synonym'][0])
else:
drug_name = drug_name[0]['Synonym']
drug_name.sort(key=len)
drug_name = str(' | '.join(drug_name[0:2]))
except:
drug_name = '-'
return can_smi, drug_name, smi_flag, drug_name_flag, pubchem_cid_flag
else:
# Convert to string
_input = str(_input)
# Convert to lowercase
_input = _input.lower()
# Remove leading and trailing spaces
_input = _input.strip()
######<CHECK IF PUBCHEM CID>######
try:
# Check if it is a PubChem CID
r = func_timeout(pubchem_time_limit, get_compounds, args=(_input, 'cid'))
# Get canonical smiles
can_smi = r[0].canonical_smiles
print(can_smi)
can_smi = self.get_canonical(can_smi)
if can_smi != None:
pubchem_cid_flag = True
try:
drug_name = func_timeout(pubchem_time_limit, get_synonyms, args=(can_smi, 'smiles'))
if len(drug_name[0]['Synonym']) == 1:
drug_name = str(drug_name[0]['Synonym'][0])
else:
drug_name = drug_name[0]['Synonym']
drug_name.sort(key=len)
drug_name = str(' | '.join(drug_name[0:2]))
except:
drug_name = '-'
return can_smi, drug_name, smi_flag, drug_name_flag, pubchem_cid_flag
else:
smi_flag = False
pubchem_cid_flag = False
drug_name = '-'
except:
smi_flag = False
pubchem_cid_flag = False
can_smi = None
drug_name = '-'
######<CHECK IF DRUG NAME>######
try:
# Remove multiple spaces from between words
_input = " ".join(_input.split())
# Check if name present in pubchem
r = func_timeout(pubchem_time_limit, get_compounds, args=(_input, 'name'))
# Get canonical smiles
can_smi = r[0].canonical_smiles
can_smi = self.get_canonical(can_smi)
if can_smi != None:
drug_name_flag = True
try:
drug_name = func_timeout(pubchem_time_limit, get_synonyms, args=(can_smi, 'smiles'))
if len(drug_name[0]['Synonym']) == 1:
drug_name = str(drug_name[0]['Synonym'][0])
else:
drug_name = drug_name[0]['Synonym']
drug_name.sort(key=len)
drug_name = str(' | '.join(drug_name[0:2]))
except:
drug_name = '-'
return can_smi, drug_name, smi_flag, drug_name_flag, pubchem_cid_flag
else:
smi_flag = False
drug_name_flag = False
drug_name = '-'
return can_smi, drug_name, smi_flag, drug_name_flag, pubchem_cid_flag
except:
smi_flag = False
drug_name_flag = False
can_smi = None
drug_name = '-'
return can_smi, drug_name, smi_flag, drug_name_flag, pubchem_cid_flag
if __name__=='__main__':
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser(description = "BiasNet")
ap.add_argument("-s", "--smiles", action = 'store', dest = 'smiles',
type = str, required = True, help = "SMILES string")
args = vars(ap.parse_args())
input_smiles = args['smiles']
input_smiles = input_smiles.strip()
biasnet = biasNet()
biasnet.predict(input_smiles)