-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.py
78 lines (64 loc) · 2.87 KB
/
filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
from scipy.signal import lfilter_zi, lfilter, iirfilter
class Filter:
def __init__(self, sampling_frequency: int = 4000, bandpass_low: int = 20, bandpass_high: int = 200,
bandpass_order: int = 4, mean_kernel_size: int = None):
"""
:param sampling_frequency: Sampling frequency of the signal in Hz
:param bandpass_low: Low cut for the bandpass filter in Hz
:param bandpass_high: High cut for the bandpass filter in Hz
:param bandpass_order: Order of the bandpass filter
:param mean_kernel_size: Size of the kernel for the mean filter. Default is a third of a second.
"""
# Define the parameters of the bandpass filter
self.fs = sampling_frequency
self.bandpass_low = bandpass_low
self.bandpass_high = bandpass_high
self.bandpass_order = bandpass_order
self.mean_kernel_size = mean_kernel_size if mean_kernel_size else int(self.fs / 3)
self.input = []
self.bandpassed = []
self.output = []
self.b, self.a = self._create_bandpass()
self.zi = lfilter_zi(self.b, self.a)
self.baseline_start = None
self.baseline_end = None
self.baseline = None
self.baseline_std = None
def _create_bandpass(self):
b, a = iirfilter(self.bandpass_order, [self.bandpass_low, self.bandpass_high], fs = self.fs, btype='band', ftype='butter')
return b, a
def apply(self, sample):
"""
:param sample: New sample to be filtered
:return: Filtered sample
"""
# Add the sample to the input buffer
self.input.append(sample)
# Apply the bandpass filter
sample, self.zi = lfilter(self.b, self.a, [sample], zi=self.zi)
sample = abs(sample[0])
self.bandpassed.append(sample)
# Apply mean filter
if len(self.bandpassed) > self.mean_kernel_size:
sample = np.mean(self.bandpassed[-self.mean_kernel_size:] + [sample])
else:
sample = np.mean(self.bandpassed + [sample])
self.output.append(sample)
return sample
def mark_as_baseline(self):
if self.baseline_start is None:
self.baseline_start = len(self.output)
def mark_as_NOT_baseline(self):
if self.baseline_start is None:
return
if self.baseline_end is None:
self.baseline_end = len(self.output)
actual_end = int(250 / 2) # half a second
actual_start = 250 * 3 + actual_end # 3 seconds
data = self.output[self.baseline_end - actual_start:self.baseline_end - actual_end]
self.baseline = np.mean(data)
self.baseline_std = np.std(data)
def reset_baseline(self):
self.baseline_start = None
self.baseline_end = None