-
Notifications
You must be signed in to change notification settings - Fork 14
/
CovMatUtils.hh
256 lines (184 loc) · 8.09 KB
/
CovMatUtils.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#pragma once
// STV analysis includes
#include "UniverseMaker.hh"
struct CovMatResults {
CovMatResults() {}
CovMatResults( TH2D* signal_cm, TH2D* bkgd_cm, TH1D* rc_signal_cv,
TH1D* rc_bkgd_cv, bool frac ) : signal_cov_mat_( signal_cm ),
bkgd_cov_mat_( bkgd_cm ), reco_signal_cv_( rc_signal_cv ),
reco_bkgd_cv_( rc_bkgd_cv ), fractional_( frac ) {}
// Returns the number of reco bins (i.e., the number of matrix elements along
// either axis)
int num_reco_bins() const { return signal_cov_mat_->GetNbinsX(); }
// Returns the fractional covariance matrix element for the signal only.
// NOTE: bin numbering in this interface is one-based (not zero-based)
// to match the conventions of ROOT histograms.
double frac_covariance_signal( int bin_a, int bin_b ) const {
double covar = signal_cov_mat_->GetBinContent( bin_a, bin_b );
if ( fractional_ ) return covar;
else {
double cv_a = reco_signal_cv_->GetBinContent( bin_a );
double cv_b = reco_signal_cv_->GetBinContent( bin_b );
double cv_prod = cv_a * cv_b;
if ( cv_prod == 0. ) return 0.;
covar /= cv_prod;
}
return covar;
}
// TODO: reduce code duplication here
// Returns the fractional covariance matrix element for the background only.
double frac_covariance_bkgd( int bin_a, int bin_b ) const {
double covar = bkgd_cov_mat_->GetBinContent( bin_a, bin_b );
if ( fractional_ ) return covar;
else {
double cv_a = reco_bkgd_cv_->GetBinContent( bin_a );
double cv_b = reco_bkgd_cv_->GetBinContent( bin_b );
double cv_prod = cv_a * cv_b;
if ( cv_prod == 0. ) return 0.;
covar /= cv_prod;
}
return covar;
}
// TODO: reduce code duplication here
// Returns the fractional covariance matrix element the full MC prediction
// (signal plus background)
double frac_covariance_total( int bin_a, int bin_b ) const {
double covar_bkgd = bkgd_cov_mat_->GetBinContent( bin_a, bin_b );
double covar_signal = signal_cov_mat_->GetBinContent( bin_a, bin_b );
double cv_a_bkgd = reco_bkgd_cv_->GetBinContent( bin_a );
double cv_b_bkgd = reco_bkgd_cv_->GetBinContent( bin_b );
double cv_a_signal = reco_signal_cv_->GetBinContent( bin_a );
double cv_b_signal = reco_signal_cv_->GetBinContent( bin_b );
// If these are fractional covariances already, we need to scale them
// back into regular covariances before summing signal and background.
if ( fractional_ ) {
covar_bkgd *= cv_a_bkgd * cv_b_bkgd;
covar_signal *= cv_a_signal * cv_b_signal;
}
// OK, now add them and divide by the total CV prediction to get a total
// fractional covariance
double covar = covar_bkgd + covar_signal;
double cv_a = cv_a_bkgd + cv_a_signal;
double cv_b = cv_b_bkgd + cv_b_signal;
double cv_prod = cv_a * cv_b;
if ( cv_prod == 0. ) return 0.;
covar /= cv_prod;
return covar;
}
std::unique_ptr< TH2D > signal_cov_mat_;
std::unique_ptr< TH2D > bkgd_cov_mat_;
std::unique_ptr< TH1D > reco_signal_cv_;
std::unique_ptr< TH1D > reco_bkgd_cv_;
bool fractional_ = false;
};
using MatrixMap = std::map< std::string,
std::map<std::string, CovMatResults> >;
// Helper function that saves the contents of the map of covariance
// matrices to an output ROOT file
void save_matrix_map( const MatrixMap& matrix_map, TFile& out_tfile )
{
TDirectoryFile* root_tdir = new TDirectoryFile( "covMat",
"covariance matrices", "", &out_tfile );
root_tdir->cd();
// Save a set of the covariance matrix labels to assist in easily
// reading them back in
// TODO: revisit this and consider a simpler technique
std::set< std::string > cov_mat_labels;
for ( const auto& pair : matrix_map ) {
const std::string& ntuple_file = pair.first;
const auto& results_map = pair.second;
std::string subdir = ntuple_subfolder_from_file_name( ntuple_file );
TDirectoryFile* ntuple_tdir = new TDirectoryFile( subdir.c_str(),
"covariance matrices", "", root_tdir );
ntuple_tdir->cd();
for ( const auto& results_pair : results_map ) {
const std::string& label = results_pair.first;
const CovMatResults& results = results_pair.second;
cov_mat_labels.insert( label );
results.signal_cov_mat_->Write( (label + "_signal_cov_mat").c_str() );
results.bkgd_cov_mat_->Write( (label + "_bkgd_cov_mat").c_str() );
results.reco_signal_cv_->Write( (label + "_reco_signal_cv").c_str() );
results.reco_bkgd_cv_->Write( (label + "_reco_bkgd_cv").c_str() );
TParameter<bool> frac( (label + "_fractional").c_str(),
results.fractional_ );
frac.Write();
} // covariance matrix categories
} // ntuple files
out_tfile.WriteObject( &cov_mat_labels, "cov_mat_labels" );
}
// Helper function that reinstantiates a map of covariance
// matrices from an input ROOT file created with save_matrix_map()
MatrixMap load_matrix_map( TFile& in_tfile ) {
MatrixMap retrieved_map;
// Here we cheat a bit. Since the pot_map is also saved to the file and has
// the same ntuple file names as keys, we can iterate over it instead of
// subdirectories of the root TDirectoryFile. I'm sure there's a better way
// to do this with the TDirectoryFile itself, but for now I use this quick
// hack.
// TODO: revisit this
std::map< std::string, float >* pot_map = nullptr;
in_tfile.GetObject( "pot_map", pot_map );
if ( !pot_map ) {
throw std::runtime_error( "Missing POT map!" );
}
std::set< std::string >* cov_mat_labels;
in_tfile.GetObject( "cov_mat_labels", cov_mat_labels );
if ( !cov_mat_labels ) {
throw std::runtime_error( "Missing covMat labels!" );
}
TDirectoryFile* root_tdir = nullptr;
in_tfile.GetObject( "covMat", root_tdir );
if ( !root_tdir ) {
throw std::runtime_error( "Could not find covMat TDirectoryFile" );
}
root_tdir->cd();
// Build a vector of file names from the POT map. Then add "total_mc"
// which is also included for the POT-summed total central-value MC
// results.
std::vector< std::string > ntuple_files;
for ( const auto& pair : *pot_map ) {
const std::string& ntuple_file = pair.first;
//float pot = pair.second;
ntuple_files.push_back( ntuple_file );
}
ntuple_files.push_back( "total_mc" );
// Now loop over the file names and reconstruct the full matrix_map
for ( const auto& ntuple_file : ntuple_files ) {
if ( !retrieved_map.count(ntuple_file) ) {
retrieved_map[ ntuple_file ] = std::map< std::string, CovMatResults >();
}
std::string subdir = ntuple_subfolder_from_file_name( ntuple_file );
TDirectoryFile* ntuple_tdir = nullptr;
root_tdir->GetObject( subdir.c_str(), ntuple_tdir );
if ( !ntuple_tdir ) {
throw std::runtime_error( "Missing covMat subdirectory " + subdir );
}
ntuple_tdir->cd();
auto& ntuple_submap = retrieved_map.at( ntuple_file );
for ( const auto& label : *cov_mat_labels ) {
// Skip the special summed covariance matrix labels that only
// exist for the "total_mc" TDirectoryFile
if ( ntuple_file != "total_mc"
&& (label == "xsec_all" || label == "xsec_unisim") ) continue;
// TODO: add error handling here for missing objects
TH2D* signal_cov = nullptr;
TH2D* bkgd_cov = nullptr;
TH1D* signal_cv = nullptr;
TH1D* bkgd_cv = nullptr;
ntuple_tdir->GetObject( (label + "_signal_cov_mat").c_str(), signal_cov );
signal_cov->SetDirectory( nullptr );
ntuple_tdir->GetObject( (label + "_bkgd_cov_mat").c_str(), bkgd_cov );
bkgd_cov->SetDirectory( nullptr );
ntuple_tdir->GetObject( (label + "_reco_signal_cv").c_str(), signal_cv );
signal_cv->SetDirectory( nullptr );
ntuple_tdir->GetObject( (label + "_reco_bkgd_cv").c_str(), bkgd_cv );
bkgd_cv->SetDirectory( nullptr );
TParameter<bool>* frac = nullptr;
ntuple_tdir->GetObject( (label + "_fractional").c_str(), frac );
CovMatResults temp_results( signal_cov, bkgd_cov, signal_cv, bkgd_cv,
frac->GetVal() );
ntuple_submap[ label ] = std::move( temp_results );
} // covariance matrix categories
} // ntuple files
return retrieved_map;
}