-
Notifications
You must be signed in to change notification settings - Fork 14
/
MatrixUtils.hh
227 lines (184 loc) · 6.88 KB
/
MatrixUtils.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#pragma once
// Standard library includes
#include <cfloat>
#include <cmath>
#include <fstream>
#include <iomanip>
#include <limits>
#include <memory>
// ROOT includes
#include "TDecompQRH.h"
#include "TMatrixD.h"
constexpr double DEFAULT_MATRIX_INVERSION_TOLERANCE = 1e-4;
std::unique_ptr< TMatrixD > invert_matrix( const TMatrixD& mat,
const double inversion_tolerance = DEFAULT_MATRIX_INVERSION_TOLERANCE )
{
// Pre-scale before inversion to avoid numerical problems. Here we choose a
// scaling factor such that the smallest nonzero entry in the original matrix
// has an absolute value of unity. Note the use of the zero-based element
// indices for TMatrixD.
constexpr double BIG_DOUBLE = std::numeric_limits<double>::max();
double min_abs = BIG_DOUBLE;
int num_bins = mat.GetNrows();
for ( int a = 0; a < num_bins; ++a ) {
for ( int b = 0; b < num_bins; ++b ) {
double element = mat( a, b );
double abs_el = std::abs( element );
if ( abs_el > 0. && abs_el < min_abs ) min_abs = abs_el;
}
}
// If all matrix elements are zero, then this scaling won't work
// and something is wrong. Complain if this is the case.
if ( min_abs == BIG_DOUBLE ) {
throw std::runtime_error( "Cannot invert a null matrix" );
}
// We're ready. Do the actual pre-scaling here. Keep the first TMatrixD
// and invert a copy. This allows us to check that the inversion was
// successful below.
auto inverse_matrix = std::make_unique< TMatrixD >( mat );
double scaling_factor = 1. / min_abs;
inverse_matrix->operator*=( scaling_factor );
// Do the inversion. Here we try the QR method. Other options involve using
// TDecompLU, TDecompBK, TDecompChol, TDecompQRH and TDecompSVD. The
// Invert() member function of TMatrixDSym uses a TDecompBK object to do
// the same thing internally.
//inverse_matrix->Invert();
TDecompQRH qr_decomp( *inverse_matrix, DBL_EPSILON );
qr_decomp.Invert( *inverse_matrix );
// Undo the scaling by re-applying it to the inverse matrix
inverse_matrix->operator*=( scaling_factor );
// Double-check that we get a unit matrix by multiplying the
// original by its inverse
TMatrixD unit_mat( mat, TMatrixD::kMult, *inverse_matrix );
for ( int a = 0; a < num_bins; ++a ) {
for ( int b = 0; b < num_bins; ++b ) {
double element = unit_mat( a, b );
double expected_element = 0.;
if ( a == b ) expected_element = 1.;
double abs_diff = std::abs( element - expected_element );
if ( abs_diff > inversion_tolerance ) {
throw std::runtime_error( "Matrix inversion failed" );
}
}
}
return inverse_matrix;
}
void dump_text_matrix( const std::string& output_file_name,
const TMatrixD& matrix )
{
// Open the output file and set up the output stream so that full numerical
// precision is preserved in the ascii text representation
std::ofstream out_file( output_file_name );
out_file << std::scientific
<< std::setprecision( std::numeric_limits<double>::max_digits10 );
int num_x_bins = matrix.GetNrows();
int num_y_bins = matrix.GetNcols();
out_file << "numXbins " << num_x_bins << '\n';
out_file << "numYbins " << num_y_bins << '\n';
out_file << "xbin ybin z\n";
for ( int xb = 0; xb < num_x_bins; ++xb ) {
for ( int yb = 0; yb < num_y_bins; ++yb ) {
double z = matrix( xb, yb );
// Use zero-based bin indices in the dump
out_file << xb << " " << yb << " " << z << '\n';
} // loop over columns (y bins)
} // loop over rows (x bins)
}
void dump_text_column_vector( const std::string& output_file_name,
const TMatrixD& matrix )
{
// Open the output file and set up the output stream so that full numerical
// precision is preserved in the ascii text representation
std::ofstream out_file( output_file_name );
out_file << std::scientific
<< std::setprecision( std::numeric_limits<double>::max_digits10 );
int num_x_bins = matrix.GetNrows();
int num_y_bins = matrix.GetNcols();
if ( num_y_bins != 1 ) {
throw std::runtime_error( "Input matrix is not a column vector" );
}
out_file << "numXbins " << num_x_bins;
for ( int xb = 0; xb < num_x_bins; ++xb ) {
double z = matrix( xb, 0 );
// Use zero-based bin indices in the dump
out_file << '\n' << xb << " " << z;
} // loop over rows (x bins)
}
// Load a TMatrixD object saved in a text file by a previous call to
// dump_text_matrix() or dump_text_column_vector()
TMatrixD load_matrix( const std::string& input_file_name ) {
// Get the table of matrix element values
std::ifstream matrix_table_file( input_file_name );
// Peek at the file contents to decide whether we're working with
// a matrix or a column vector
std::string dummy;
matrix_table_file >> dummy >> dummy >> dummy;
bool is_matrix = ( dummy == "numYbins" );
// Return to the beginning of the file for parsing
matrix_table_file.seekg( 0 );
// Get the matrix or vector dimensions from the header line(s)
int num_x_bins, num_y_bins;
matrix_table_file >> dummy >> num_x_bins;
if ( is_matrix ) {
matrix_table_file >> dummy >> num_y_bins;
// Skip the next header line which contains the data column names
std::getline( matrix_table_file, dummy );
}
else {
num_y_bins = 1;
}
// Create a TMatrixD with the correct dimensions
TMatrixD matrix( num_x_bins, num_y_bins );
// Parse its contents from the remaining lines
std::string line;
while ( std::getline(matrix_table_file, line) ) {
int bin1, bin2;
double element;
std::stringstream temp_ss( line );
temp_ss >> bin1;
if ( is_matrix ) {
temp_ss >> bin2;
}
else {
bin2 = 0;
}
temp_ss >> element;
if ( bin1 < num_x_bins && bin2 < num_y_bins ) {
matrix( bin1, bin2 ) = element;
}
}
return matrix;
}
// Compute the direct sum of a vector of input TMatrixD objects
TMatrixD direct_sum( const std::vector< const TMatrixD* >& matrices ) {
// Determine the dimensions of the direct sum of the input matrices
int num_rows = 0;
int num_cols = 0;
for ( const auto& mat : matrices ) {
num_rows += mat->GetNrows();
num_cols += mat->GetNcols();
}
// Create storage for the direct sum matrix, filling with zeros to start
TMatrixD dir_sum( num_rows, num_cols );
dir_sum.Zero();
// Fill it with the appropriate elements of the input matrices
int start_row = 0;
int start_col = 0;
for ( const auto& mat : matrices ) {
int mat_rows = mat->GetNrows();
int mat_cols = mat->GetNcols();
for ( int r = 0; r < mat_rows; ++r ) {
for ( int c = 0; c < mat_cols; ++c ) {
dir_sum( start_row + r, start_col + c ) = mat->operator()( r, c );
}
}
start_row += mat_rows;
start_col += mat_cols;
}
return dir_sum;
}
// Overloaded version for a pair of input matrices
TMatrixD direct_sum( const TMatrixD& m1, const TMatrixD& m2 ) {
std::vector< const TMatrixD* > matrices = { &m1, &m2 };
return direct_sum( matrices );
}