-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.cc
80 lines (70 loc) · 2.33 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <string>
#include "mask_detector.h" // NOLINT
int main(int argc, char* argv[]) {
if (argc < 3 || argc > 4) {
std::cout << "Usage:"
<< "./mask_detector ./models/ ./images/test.png"
<< std::endl;
return -1;
}
bool use_gpu = (argc == 4 ? std::stoi(argv[3]) : false);
auto det_model_dir = std::string(argv[1]) + "/pyramidbox_lite";
auto cls_model_dir = std::string(argv[1]) + "/mask_detector";
auto image_path = argv[2];
// Init Detection Model
float det_shrink = 0.6;
float det_threshold = 0.7;
std::vector<float> det_means = {104, 177, 123};
std::vector<float> det_scale = {0.007843, 0.007843, 0.007843};
FaceDetector detector(
det_model_dir,
det_means,
det_scale,
use_gpu,
det_threshold);
// Init Classification Model
std::vector<float> cls_means = {0.5, 0.5, 0.5};
std::vector<float> cls_scale = {1.0, 1.0, 1.0};
MaskClassifier classifier(
cls_model_dir,
cls_means,
cls_scale,
use_gpu);
// Load image
cv::Mat img = imread(image_path, cv::IMREAD_COLOR);
// Prediction result
std::vector<FaceResult> results;
// Stage1: Face detection
detector.Predict(img, &results, det_shrink);
// Stage2: Mask wearing classification
classifier.Predict(&results);
for (const FaceResult& item : results) {
printf("{left=%d, right=%d, top=%d, bottom=%d},"
" class_id=%d, confidence=%.5f\n",
item.rect[0],
item.rect[1],
item.rect[2],
item.rect[3],
item.class_id,
item.score);
}
// Visualization result
cv::Mat vis_img;
VisualizeResult(img, results, &vis_img);
cv::imwrite("result.jpg", vis_img);
return 0;
}