-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmask_detector.cc
271 lines (255 loc) · 8.82 KB
/
mask_detector.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
# include "mask_detector.h"
// Normalize the image by (pix - mean) * scale
void NormalizeImage(
const std::vector<float> &mean,
const std::vector<float> &scale,
cv::Mat& im, // NOLINT
float* input_buffer) {
int height = im.rows;
int width = im.cols;
int stride = width * height;
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
int base = h * width + w;
input_buffer[base + 0 * stride] =
(im.at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
input_buffer[base + 1 * stride] =
(im.at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
input_buffer[base + 2 * stride] =
(im.at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
}
}
}
// Load Model and return model predictor
void LoadModel(
const std::string& model_dir,
bool use_gpu,
std::unique_ptr<paddle::PaddlePredictor>* predictor) {
// Config the model info
paddle::AnalysisConfig config;
config.SetModel(model_dir + "/__model__",
model_dir + "/__params__");
if (use_gpu) {
config.EnableUseGpu(100, 0);
} else {
config.DisableGpu();
}
config.SwitchUseFeedFetchOps(false);
config.SwitchSpecifyInputNames(true);
// Memory optimization
config.EnableMemoryOptim();
*predictor = std::move(CreatePaddlePredictor(config));
}
// Visualiztion MaskDetector results
void VisualizeResult(const cv::Mat& img,
const std::vector<FaceResult>& results,
cv::Mat* vis_img) {
for (int i = 0; i < results.size(); ++i) {
int w = results[i].rect[1] - results[i].rect[0];
int h = results[i].rect[3] - results[i].rect[2];
cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[2], w, h);
// Configure color and text size
cv::Scalar roi_color;
std::string text;
if (results[i].class_id == 1) {
text = "MASK: ";
roi_color = cv::Scalar(0, 255, 0);
} else {
text = "NO MASK: ";
roi_color = cv::Scalar(0, 0, 255);
}
text += std::to_string(static_cast<int>(results[i].score*100)) + "%";
int font_face = cv::FONT_HERSHEY_TRIPLEX;
double font_scale = 1.f;
float thickness = 1;
cv::Size text_size = cv::getTextSize(text,
font_face,
font_scale,
thickness,
nullptr);
float new_font_scale = roi.width * font_scale / text_size.width;
text_size = cv::getTextSize(text,
font_face,
new_font_scale,
thickness,
nullptr);
cv::Point origin;
origin.x = roi.x;
origin.y = roi.y;
// Configure text background
cv::Rect text_back = cv::Rect(results[i].rect[0],
results[i].rect[2] - text_size.height,
text_size.width,
text_size.height);
// Draw roi object, text, and background
*vis_img = img;
cv::rectangle(*vis_img, roi, roi_color, 2);
cv::rectangle(*vis_img, text_back, cv::Scalar(225, 225, 225), -1);
cv::putText(*vis_img,
text,
origin,
font_face,
new_font_scale,
cv::Scalar(0, 0, 0),
thickness);
}
}
void FaceDetector::Preprocess(const cv::Mat& image_mat, float shrink) {
// Clone the image : keep the original mat for postprocess
cv::Mat im = image_mat.clone();
cv::resize(im, im, cv::Size(), shrink, shrink, cv::INTER_CUBIC);
im.convertTo(im, CV_32FC3, 1.0);
int rc = im.channels();
int rh = im.rows;
int rw = im.cols;
input_shape_ = {1, rc, rh, rw};
input_data_.resize(1 * rc * rh * rw);
float* buffer = input_data_.data();
NormalizeImage(mean_, scale_, im, input_data_.data());
}
void FaceDetector::Postprocess(
const cv::Mat& raw_mat,
float shrink,
std::vector<FaceResult>* result) {
result->clear();
int rect_num = 0;
int rh = input_shape_[2];
int rw = input_shape_[3];
int total_size = output_data_.size() / 6;
for (int j = 0; j < total_size; ++j) {
// Class id
int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
// Confidence score
float score = output_data_[1 + j * 6];
int xmin = (output_data_[2 + j * 6] * rw) / shrink;
int ymin = (output_data_[3 + j * 6] * rh) / shrink;
int xmax = (output_data_[4 + j * 6] * rw) / shrink;
int ymax = (output_data_[5 + j * 6] * rh) / shrink;
int wd = xmax - xmin;
int hd = ymax - ymin;
if (score > threshold_) {
auto roi = cv::Rect(xmin, ymin, wd, hd) &
cv::Rect(0, 0, rw / shrink, rh / shrink);
// A view ref to original mat
cv::Mat roi_ref(raw_mat, roi);
FaceResult result_item;
result_item.rect = {xmin, xmax, ymin, ymax};
result_item.roi_rect = roi_ref;
result->push_back(result_item);
}
}
}
void FaceDetector::Predict(const cv::Mat& im,
std::vector<FaceResult>* result,
float shrink) {
// Preprocess image
Preprocess(im, shrink);
// Prepare input tensor
auto input_names = predictor_->GetInputNames();
auto in_tensor = predictor_->GetInputTensor(input_names[0]);
in_tensor->Reshape(input_shape_);
in_tensor->copy_from_cpu(input_data_.data());
// Run predictor
predictor_->ZeroCopyRun();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
std::vector<int> output_shape = out_tensor->shape();
// Calculate output length
int output_size = 1;
for (int j = 0; j < output_shape.size(); ++j) {
output_size *= output_shape[j];
}
output_data_.resize(output_size);
out_tensor->copy_to_cpu(output_data_.data());
// Postprocessing result
Postprocess(im, shrink, result);
}
inline void MaskClassifier::Preprocess(std::vector<FaceResult>* faces) {
int batch_size = faces->size();
input_shape_ = {
batch_size,
EVAL_CROP_SIZE_[0],
EVAL_CROP_SIZE_[1],
EVAL_CROP_SIZE_[2]
};
// Reallocate input buffer
int input_size = 1;
for (int x : input_shape_) {
input_size *= x;
}
input_data_.resize(input_size);
auto buffer_base = input_data_.data();
for (int i = 0; i < batch_size; ++i) {
cv::Mat im = (*faces)[i].roi_rect;
// Resize
int rc = im.channels();
int rw = im.cols;
int rh = im.rows;
cv::Size resize_size(input_shape_[3], input_shape_[2]);
if (rw != input_shape_[3] || rh != input_shape_[2]) {
cv::resize(im, im, resize_size, 0.f, 0.f, cv::INTER_CUBIC);
}
im.convertTo(im, CV_32FC3, 1.0 / 256.0);
rc = im.channels();
rw = im.cols;
rh = im.rows;
float* buffer_i = buffer_base + i * rc * rw * rh;
NormalizeImage(mean_, scale_, im, buffer_i);
}
}
void MaskClassifier::Postprocess(std::vector<FaceResult>* faces) {
float* data = output_data_.data();
int batch_size = faces->size();
int out_num = output_data_.size();
for (int i = 0; i < batch_size; ++i) {
auto out_addr = data + (out_num / batch_size) * i;
int best_class_id = 0;
float best_class_score = *(best_class_id + out_addr);
for (int j = 0; j < (out_num / batch_size); ++j) {
auto infer_class = j;
auto score = *(j + out_addr);
if (score > best_class_score) {
best_class_id = infer_class;
best_class_score = score;
}
}
(*faces)[i].class_id = best_class_id;
(*faces)[i].score = best_class_score;
}
}
void MaskClassifier::Predict(std::vector<FaceResult>* faces) {
Preprocess(faces);
// Prepare input tensor
auto input_names = predictor_->GetInputNames();
auto in_tensor = predictor_->GetInputTensor(input_names[0]);
in_tensor->Reshape(input_shape_);
in_tensor->copy_from_cpu(input_data_.data());
// Run predictor
predictor_->ZeroCopyRun();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
auto out_tensor = predictor_->GetOutputTensor(output_names[1]);
std::vector<int> output_shape = out_tensor->shape();
// Calculate output length
int output_size = 1;
for (int j = 0; j < output_shape.size(); ++j) {
output_size *= output_shape[j];
}
output_data_.resize(output_size);
out_tensor->copy_to_cpu(output_data_.data());
Postprocess(faces);
}