forked from yznpku/HackerRank
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solution.py
46 lines (40 loc) · 1.78 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# The solution consists of 4 steps:
# * identify all words slots (horizontal & vertical)
# * find all intersections
# * find an answer that satisfies the length constraints
# and intersection constraints
# * fill in the answer to the original puzzle
import itertools
# identify all words slots (horizontal & vertical)
A = [input() for i in range(10)]
horizontal, vertical = [], []
for lst in (horizontal, vertical):
for row in range(10):
for c, g in itertools.groupby(range(10), key=lambda x: A[row][x]): # group by '+' or '-'
l = list(g)
if c == '-' and len(l) > 1:
lst.append([row, l[0], l[-1]])
A = list(map(list, zip(*A)))
# find all intersections
intersections = [(i, column[0] - row[1], j, row[0] - column[1]) \
for i, row in enumerate(horizontal) for j, column in enumerate(vertical) \
if row[1] <= column[0] <= row[2] and column[1] <= row[0] <= column[2]]
# find an answer
# Since 10 is a small enough number to allow an O(n!) solution, I will go through all possible
# permutations without branch-cutting here. This can save me writing some search code.
words = input().split(';')
result = None
for l in itertools.permutations(words, len(words)):
if all(len(l[i]) == horizontal[i][2] - horizontal[i][1] + 1 for i in range(len(horizontal))) and \
all(len(l[i + len(horizontal)]) == vertical[i][2] - vertical[i][1] + 1 for i in range(len(vertical))) and \
all(l[i[0]][i[1]] == l[i[2] + len(horizontal)][i[3]] for i in intersections):
result = l
break
# fill in the answer
for i, x in enumerate(horizontal):
A[x[0]][x[1]:x[2]+1] = result[i]
A = list(map(list, zip(*A)))
for i, x in enumerate(vertical):
A[x[0]][x[1]:x[2]+1] = result[i + len(horizontal)]
A = list(map(list, zip(*A)))
print(*(''.join(x) for x in A), sep='\n')