forked from drivechain-project/mainchain-old
-
Notifications
You must be signed in to change notification settings - Fork 5
/
allocator_tests.cpp
234 lines (212 loc) · 7.18 KB
/
allocator_tests.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright (c) 2012-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <util.h>
#include <support/allocators/secure.h>
#include <test/test_skydoge.h>
#include <boost/test/unit_test.hpp>
BOOST_FIXTURE_TEST_SUITE(allocator_tests, BasicTestingSetup)
BOOST_AUTO_TEST_CASE(arena_tests)
{
// Fake memory base address for testing
// without actually using memory.
void *synth_base = reinterpret_cast<void*>(0x08000000);
const size_t synth_size = 1024*1024;
Arena b(synth_base, synth_size, 16);
void *chunk = b.alloc(1000);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(chunk != nullptr);
BOOST_CHECK(b.stats().used == 1008); // Aligned to 16
BOOST_CHECK(b.stats().total == synth_size); // Nothing has disappeared?
b.free(chunk);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 0);
BOOST_CHECK(b.stats().free == synth_size);
try { // Test exception on double-free
b.free(chunk);
BOOST_CHECK(0);
} catch(std::runtime_error &)
{
}
void *a0 = b.alloc(128);
void *a1 = b.alloc(256);
void *a2 = b.alloc(512);
BOOST_CHECK(b.stats().used == 896);
BOOST_CHECK(b.stats().total == synth_size);
#ifdef ARENA_DEBUG
b.walk();
#endif
b.free(a0);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 768);
b.free(a1);
BOOST_CHECK(b.stats().used == 512);
void *a3 = b.alloc(128);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 640);
b.free(a2);
BOOST_CHECK(b.stats().used == 128);
b.free(a3);
BOOST_CHECK(b.stats().used == 0);
BOOST_CHECK_EQUAL(b.stats().chunks_used, 0);
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
BOOST_CHECK_EQUAL(b.stats().chunks_free, 1);
std::vector<void*> addr;
BOOST_CHECK(b.alloc(0) == nullptr); // allocating 0 always returns nullptr
#ifdef ARENA_DEBUG
b.walk();
#endif
// Sweeping allocate all memory
for (int x=0; x<1024; ++x)
addr.push_back(b.alloc(1024));
BOOST_CHECK(b.stats().free == 0);
BOOST_CHECK(b.alloc(1024) == nullptr); // memory is full, this must return nullptr
BOOST_CHECK(b.alloc(0) == nullptr);
for (int x=0; x<1024; ++x)
b.free(addr[x]);
addr.clear();
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
// Now in the other direction...
for (int x=0; x<1024; ++x)
addr.push_back(b.alloc(1024));
for (int x=0; x<1024; ++x)
b.free(addr[1023-x]);
addr.clear();
// Now allocate in smaller unequal chunks, then deallocate haphazardly
// Not all the chunks will succeed allocating, but freeing nullptr is
// allowed so that is no problem.
for (int x=0; x<2048; ++x)
addr.push_back(b.alloc(x+1));
for (int x=0; x<2048; ++x)
b.free(addr[((x*23)%2048)^242]);
addr.clear();
// Go entirely wild: free and alloc interleaved,
// generate targets and sizes using pseudo-randomness.
for (int x=0; x<2048; ++x)
addr.push_back(0);
uint32_t s = 0x12345678;
for (int x=0; x<5000; ++x) {
int idx = s & (addr.size()-1);
if (s & 0x80000000) {
b.free(addr[idx]);
addr[idx] = 0;
} else if(!addr[idx]) {
addr[idx] = b.alloc((s >> 16) & 2047);
}
bool lsb = s & 1;
s >>= 1;
if (lsb)
s ^= 0xf00f00f0; // LFSR period 0xf7ffffe0
}
for (void *ptr: addr)
b.free(ptr);
addr.clear();
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
}
/** Mock LockedPageAllocator for testing */
class TestLockedPageAllocator: public LockedPageAllocator
{
public:
TestLockedPageAllocator(int count_in, int lockedcount_in): count(count_in), lockedcount(lockedcount_in) {}
void* AllocateLocked(size_t len, bool *lockingSuccess) override
{
*lockingSuccess = false;
if (count > 0) {
--count;
if (lockedcount > 0) {
--lockedcount;
*lockingSuccess = true;
}
return reinterpret_cast<void*>(0x08000000 + (count<<24)); // Fake address, do not actually use this memory
}
return 0;
}
void FreeLocked(void* addr, size_t len) override
{
}
size_t GetLimit() override
{
return std::numeric_limits<size_t>::max();
}
private:
int count;
int lockedcount;
};
BOOST_AUTO_TEST_CASE(lockedpool_tests_mock)
{
// Test over three virtual arenas, of which one will succeed being locked
std::unique_ptr<LockedPageAllocator> x(new TestLockedPageAllocator(3, 1));
LockedPool pool(std::move(x));
BOOST_CHECK(pool.stats().total == 0);
BOOST_CHECK(pool.stats().locked == 0);
// Ensure unreasonable requests are refused without allocating anything
void *invalid_toosmall = pool.alloc(0);
BOOST_CHECK(invalid_toosmall == nullptr);
BOOST_CHECK(pool.stats().used == 0);
BOOST_CHECK(pool.stats().free == 0);
void *invalid_toobig = pool.alloc(LockedPool::ARENA_SIZE+1);
BOOST_CHECK(invalid_toobig == nullptr);
BOOST_CHECK(pool.stats().used == 0);
BOOST_CHECK(pool.stats().free == 0);
void *a0 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a0);
BOOST_CHECK(pool.stats().locked == LockedPool::ARENA_SIZE);
void *a1 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a1);
void *a2 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a2);
void *a3 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a3);
void *a4 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a4);
void *a5 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a5);
// We've passed a count of three arenas, so this allocation should fail
void *a6 = pool.alloc(16);
BOOST_CHECK(!a6);
pool.free(a0);
pool.free(a2);
pool.free(a4);
pool.free(a1);
pool.free(a3);
pool.free(a5);
BOOST_CHECK(pool.stats().total == 3*LockedPool::ARENA_SIZE);
BOOST_CHECK(pool.stats().locked == LockedPool::ARENA_SIZE);
BOOST_CHECK(pool.stats().used == 0);
}
// These tests used the live LockedPoolManager object, this is also used
// by other tests so the conditions are somewhat less controllable and thus the
// tests are somewhat more error-prone.
BOOST_AUTO_TEST_CASE(lockedpool_tests_live)
{
LockedPoolManager &pool = LockedPoolManager::Instance();
LockedPool::Stats initial = pool.stats();
void *a0 = pool.alloc(16);
BOOST_CHECK(a0);
// Test reading and writing the allocated memory
*((uint32_t*)a0) = 0x1234;
BOOST_CHECK(*((uint32_t*)a0) == 0x1234);
pool.free(a0);
try { // Test exception on double-free
pool.free(a0);
BOOST_CHECK(0);
} catch(std::runtime_error &)
{
}
// If more than one new arena was allocated for the above tests, something is wrong
BOOST_CHECK(pool.stats().total <= (initial.total + LockedPool::ARENA_SIZE));
// Usage must be back to where it started
BOOST_CHECK(pool.stats().used == initial.used);
}
BOOST_AUTO_TEST_SUITE_END()