-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
75 lines (59 loc) · 1.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os, sys, time
import numpy as np
import random
import torch
from torch.autograd import Variable
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, gammas, schedule, lr):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
assert len(gammas) == len(schedule), "length of gammas and schedule should be equal"
for (gamma, step) in zip(gammas, schedule):
if (epoch >= step):
lr = lr * gamma
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def compute_shapes(models, args):
shapes = []
# switch to evaluate mode
for model in models:
model.eval()
inputs = torch.FloatTensor(1, 3, 32, 32)
inputs_var = Variable(inputs)
output = models[0](inputs_var)
size = output.size()
shape = [args.batch_size, ] + [x for x in size[1:]]
shapes.append(shape)
for model, gpu in zip(models[1:(args.splits-1)], args.dist_gpus[1:(args.splits-1)]):
output = model(output)
size = output.size()
shape = [args.batch_size, ] + [x for x in size[1:]]
shapes.append(shape)
return shapes