We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
When running two models each requesting the use of the ArmNN delegate, there is a race condition resulting in the call stack:
0# 0x0000AAAAD17609D4 in tritonserver 1# __kernel_rt_sigreturn in linux-vdso.so.1 2# armnn::NeonConvolution2dWorkload::Execute() const in /opt/tritonserver/backends/armnn_tflite/libarmnn.so.29 3# armnn::LoadedNetwork::Execute(std::unique_ptr<arm::pipe::TimelineUtilityMethods, std::default_delete<arm::pipe::TimelineUtilityMethods> >&, arm::pipe::ProfilingGuid) in /opt/tritonserver/backends/armnn_tflite/libarmnn.so.29 4# armnn::LoadedNetwork::EnqueueWorkload(std::vector<std::pair<int, armnn::ConstTensor>, std::allocator<std::pair<int, armnn::ConstTensor> > > const&, std::vector<std::pair<int, armnn::Tensor>, std::allocator<std::pair<int, armnn::Tensor> > > const&, std::vector<unsigned int, std::allocator<unsigned int> >, std::vector<unsigned int, std::allocator<unsigned int> >) in /opt/tritonserver/backends/armnn_tflite/libarmnn.so.29 5# armnn::RuntimeImpl::EnqueueWorkload(int, std::vector<std::pair<int, armnn::ConstTensor>, std::allocator<std::pair<int, armnn::ConstTensor> > > const&, std::vector<std::pair<int, armnn::Tensor>, std::allocator<std::pair<int, armnn::Tensor> > > const&, std::vector<unsigned int, std::allocator<unsigned int> >, std::vector<unsigned int, std::allocator<unsigned int> >) in /opt/tritonserver/backends/armnn_tflite/libarmnn.so.29 6# armnn::IRuntime::EnqueueWorkload(int, std::vector<std::pair<int, armnn::ConstTensor>, std::allocator<std::pair<int, armnn::ConstTensor> > > const&, std::vector<std::pair<int, armnn::Tensor>, std::allocator<std::pair<int, armnn::Tensor> > > const&, std::vector<unsigned int, std::allocator<unsigned int> >, std::vector<unsigned int, std::allocator<unsigned int> >) in /opt/tritonserver/backends/armnn_tflite/libarmnn.so.29 7# armnnDelegate::ArmnnSubgraph::Invoke(TfLiteContext*, TfLiteNode*) in /opt/tritonserver/backends/armnn_tflite/libarmnnDelegate.so.26 8# 0x0000FFFF188CC990 in /opt/tritonserver/backends/armnn_tflite/libtriton_armnn_tflite.so 9# 0x0000FFFF188A8954 in /opt/tritonserver/backends/armnn_tflite/libtriton_armnn_tflite.so 10# 0x0000FFFF187D457C in /opt/tritonserver/backends/armnn_tflite/libtriton_armnn_tflite.so 11# 0x0000FFFF187DCF04 in /opt/tritonserver/backends/armnn_tflite/libtriton_armnn_tflite.so 12# TRITONBACKEND_ModelInstanceExecute in /opt/tritonserver/backends/armnn_tflite/libtriton_armnn_tflite.so 13# 0x0000FFFF8BF836A0 in /opt/tritonserver/bin/../lib/libtritonserver.so 14# 0x0000FFFF8BF845C4 in /opt/tritonserver/bin/../lib/libtritonserver.so 15# 0x0000FFFF8BFF4F50 in /opt/tritonserver/bin/../lib/libtritonserver.so 16# 0x0000FFFF8BF7D908 in /opt/tritonserver/bin/../lib/libtritonserver.so 17# 0x0000FFFF8BDFBFAC in /lib/aarch64-linux-gnu/libstdc++.so.6 18# 0x0000FFFF8C3C3624 in /lib/aarch64-linux-gnu/libpthread.so.0 19# 0x0000FFFF8BBBE49C in /lib/aarch64-linux-gnu/libc.so.6 Segmentation fault (core dumped)
It seems that the ArmNN delegate is only created once when loading two ArmNN accelerated models.
The above was generated using the model config:
max_batch_size: 1 input { name: "input_1" data_type: TYPE_UINT8 format: FORMAT_NHWC dims: 300 dims: 300 dims: 3 } output { name: "Identity" data_type: TYPE_UINT8 dims: 8 } instance_group { count: 1 kind: KIND_CPU } optimization { execution_accelerators { cpu_execution_accelerator { name: "armnn" parameters { key: "fast_math_enabled" value: "on" } parameters { key: "num_threads" value: "4" } parameters { key: "reduce_fp32_to_bf16" value: "off" } parameters { key: "reduce_fp32_to_fp16" value: "off" } } } } parameters { key: "tflite_num_threads" value { string_value: "1" } } backend: "armnn_tflite"
for efficientnet_quant and the following:
max_batch_size: 1 input { name: "input" data_type: TYPE_FP32 format: FORMAT_NHWC dims: 299 dims: 299 dims: 3 } output { name: "InceptionV3/Predictions/Reshape_1" data_type: TYPE_FP32 dims: 1001 } instance_group { count: 1 kind: KIND_CPU } optimization { execution_accelerators { cpu_execution_accelerator { name: "armnn" parameters { key: "fast_math_enabled" value: "on" } parameters { key: "num_threads" value: "2" } parameters { key: "reduce_fp32_to_bf16" value: "off" } parameters { key: "reduce_fp32_to_fp16" value: "off" } } } } parameters { key: "tflite_num_threads" value { string_value: "2" } } backend: "armnn_tflite"
for inceptionv3
The text was updated successfully, but these errors were encountered:
Likely related to #4
Sorry, something went wrong.
jishminor
No branches or pull requests
When running two models each requesting the use of the ArmNN delegate, there is a race condition resulting in the call stack:
It seems that the ArmNN delegate is only created once when loading two ArmNN accelerated models.
The above was generated using the model config:
for efficientnet_quant and the following:
for inceptionv3
The text was updated successfully, but these errors were encountered: